СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Теория вероятности в задачах ЕГЭ

Категория: Математика

Нажмите, чтобы узнать подробности

В данной работе представлен разбор разных типов задач по теме "Теория вероятности", предлагаемых в тренировочных КИМах ЕГЭ.

Просмотр содержимого документа
«Теория вероятности в задачах ЕГЭ»









Выступление

на методическом объединении учителей математики по теме

«Задачи раздела «Вероятность»

в КИМ ЕГЭ»









Подготовила учитель математики

МБОУ «Лицей №4» г.Рузаевка

Овчинникова Т.В.

















2016





ЕГЭ по математике является обязательным и по праву считается одним из самых сложных. Как и в прошлом году будет разделение экзаменов на базовый и профильный уровни.

Изменений структуры и содержания экзаменационной работы базового уровня в КИМ ЕГЭ 2016 года в сравнении с 2015 годом нет.

В профильном уровне из первой части исключены два задания: задание практико-ориентированной направленности базового уровня сложности и задание по стереометрии повышенного уровня сложности. Максимальный первичный балл уменьшился с 34 до 32 баллов.

ФИПИ опубликовал образцы Демонстрационных вариантов ЕГЭ 2016 по математике. 
В этом году задания Демонстрационного варианта базового уровня соответствуют прошлогодним практически полностью, за исключением незначительных редакционных правок, облегчающих прочтение текста задачи. Более существенным изменением является добавление в экзаменационную работу раздела Справочные материалы, что ранее было характерно только для ОГЭ в 9-ом классе.

Демонстрационные варианты носят исключительно ознакомительный характер. Они дают возможность изучить структуру КИМ: количество заданий, их форму, уровень сложности и дают представление о требованиях к оформлению ответов.

Задания демонстрационных вариантов не используются на экзаменах, но они имеют аналогичную структуру, ознакомление с которой позволяет выпускникам выработать стратегию подготовки к ЕГЭ.

В 2012 году в ЕГЭ по математике впервые появилось задание по теории вероятностей. С тех пор их число и разнообразие прототипов, опубликованных на сайте ФИПИ,  значительно возросло. Появились задачи на сумму и произведение событий. Для этого типа задач формулы не главное. Гораздо важнее понять и хорошо сформулировать событие, о котором спрашивается в условии задачи. 

Наибольшие затруднения при выполнении части 1 у выпускников вызывают задачи раздела «Вероятность». Решения некоторых типов задач я бы хотела вам предложить.

Определение вероятности

Вероятностью события A называют отношение числа m благоприятствующих этому событию исходов к общему числу n всех равновозможных несовместимых событий, которые могут произойти в результате одного испытания или наблюдения:

Пусть k – количество бросков монеты, тогда количество всевозможных исходов: n = 2k.

Пусть k – количество бросков кубика, тогда количество всевозможных исходов: n = 6k.

  1. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.

Решение.

Всего 4 варианта:  о; о    о; р    р; р    р; о.    

Благоприятных 2:   о; р  и р; о.  

Вероятность равна 2/4 = 1/2 = 0,5.

  1. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых.

Решение.

Игральные кости – это кубики с 6 гранями. На первом кубике может выпасть  1, 2, 3, 4, 5 или  6 очков. Каждому варианту выпадения очков соответствует 6 вариантов выпадения очков на втором кубике.

Т.е. всего различных вариантов 6×6 = 36.

Варианты (исходы эксперимента) будут такие:

1; 1  1; 2  1; 3  1; 4  1; 5  1; 6

2; 1  2; 2  2; 3  2; 4  2; 5  2; 6

и т.д. ..............................

6; 1  6; 2  6; 3  6; 4  6; 5  6; 6

Подсчитаем количество исходов (вариантов), в которых сумма очков двух кубиков равна 8.

2; 6   3; 5;  4; 4   5; 3   6; 2.   Всего 5 вариантов.

Найдем вероятность:   5/36 = 0,138 ≈ 0,14.

  1. В сборнике билетов по биологии всего 55 билетов, в 11 из них встречается вопрос по ботанике. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по ботанике.

Решение:

Вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по ботанике, равна 11/55 =1/5 = 0,2.

  1. В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США, остальные − из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая.

Решение.

Всего участвует 20 спортсменок, из которых 20 – 8 – 7 = 5 спортсменок из Китая.

Вероятность того, что спортсменка, выступающая первой, окажется из Китая, равна 5/20 = 1/4 = 0,25.

  1. Научная конференция проводится в 5 дней. Всего запланировано 75 докладов − первые три дня по 17 докладов, остальные распределены поровну между четвертым и пятым днями. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции?

Решение:

В последний день конференции запланировано

(75 – 17 × 3) : 2 = 12 докладов.

Вероятность того, что доклад профессора М. окажется запланированным на последний день конференции, равна 12/75 = 4/25 = 0,16.

  1. Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 10 участников из России, в том числе Руслан Орлов. Найдите вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России?

Решение:

Нужно учесть, что Руслан Орлов должен играть с каким-либо бадминтонистом из России. И сам Руслан Орлов тоже из России.

Вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России, равна 9/25 = 36/100 = 0,36.

  1. Даша дважды бросает игральный кубик. В сумме у нее выпало 8 очков. Найдите вероятность того, что при первом броске выпало 2 очка.

Решение.

В сумме на двух кубиках должно выпасть 8 очков. Это возможно, если будут следующие комбинации:

2 и 6

6 и 2

3 и 5

5 и 3

4 и 4

Всего 5 вариантов. Подсчитаем количество исходов (вариантов), в которых при первом броске выпало 2 очка.Такой вариант 1.

Найдем вероятность:   1/5 = 0,2.

  1. В чемпионате мира участвует 20 команд. С помощью жребия их нужно разделить на пять групп по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп:     

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5.

Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется в третьей группе.   

Решение:

Всего команд 20, групп – 5. В каждой группе – 4 команды.

Итак, всего исходов получилось 20, нужных нам – 4, значит, вероятность выпадения нужного исхода 4/20 = 0,2.

  1. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая – 55%. Первая фабрика выпускает 3% бракованных стекол, а вторая – 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Решение:

Вероятность того, что стекло куплено на первой фабрике и оно бракованное: р1 = 0,45 · 0,03 = 0,0135.

Вероятность того, что стекло куплено на второй фабрике и оно бракованное: р2 = 0,55 · 0,01 = 0,0055.

Поэтому по формуле полной вероятности вероятность того, что случайно купленное в магазине стекло окажется бракованным равна

р = р1 + р2 = 0,0135 + 0,0055 = 0,019.

  1. Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,52. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,3.Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

Решение:

Возможность выиграть первую и вторую партию не зависят друг от друга. Вероятность произведения независимых событий равна произведению их вероятностей: р = 0,52 · 0,3 = 0,156.

  1. Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два раза промахнулся. Результат округлите до сотых.

Решение:

Результат каждого следующего выстрела не зависит от предыдущих. Поэтому события «попал при первом выстреле», «попал при втором выстреле» и т.д. независимы.

Вероятность каждого попадания равна 0,8. Значит, вероятность промаха равна 1 – 0,8 = 0,2.

1 выстрел: 0,8

2 выстрел: 0,8

3 выстрел: 0,8

4 выстрел: 0,2

5 выстрел: 0,2

По формуле умножения вероятностей независимых событий, получаем, что искомая вероятность равна:

0,8 ∙ 0,8 ∙ 0,8 ∙ 0,2 ∙ 0,2 = 0,02048 ≈ 0,02.

  1. В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,05 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.

Решение:

Найдем вероятность того, что неисправны оба автомата.

Эти события независимые, вероятность их произведения равна произведению вероятностей этих событий: 0,05 · 0,05 = 0,0025.

Событие, состоящее в том, что исправен хотя бы один автомат, противоположное. Следовательно, его вероятность равна

1 − 0,0025 = 0,9975.

  1. Ковбой Джон попадает в муху на стене с вероятностью 0,9, если стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,2. На столе лежит 10 револьверов, из них только 4 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся.

Решение:

Вероятность того, что Джон промахнется, если схватит пристрелянный револьвер равна: 0,4 · (1 − 0,9) = 0,04

Вероятность того, что Джон промахнется, если схватит непристрелянный револьвер равна: 0,6 · (1 − 0,2) = 0,48

Эти события несовместны, вероятность их суммы равна сумме вероятностей этих событий: 0,04 + 0,48 = 0,52.



  1. При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,4, а при каждом последующем – 0,6. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,98?

Решение:

Можно решать задачу «по действиям», вычисляя вероятность уцелеть после ряда последовательных промахов:

Р(1) = 0,6;

Р(2) = Р(1) · 0,4 = 0,24;

Р(3) = Р(2) · 0,4 = 0,096;

Р(4) = Р(3) · 0,4 = 0,0384;

Р(5) = Р(4) · 0,4 = 0,01536.

Последняя вероятность меньше 0,02, поэтому достаточно пяти выстрелов по мишени.

  1. В классе 26 человек, среди них два близнеца – Андрей и Сергей. Класс случайным образом делят на две группы по 13 человек в каждой. Найдите вероятность того, что Андрей и Сергей окажутся в одной группе.

Решение:

Пусть один из близнецов находится в некоторой группе.

Вместе с ним в группе окажутся 12 человек из 25 оставшихся одноклассников. Вероятность того, что второй близнец окажется среди этих 12 человек, равна P = 12 : 25 = 0,48.


























Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!