СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Определенный интеграл.

Категория: Математика

Нажмите, чтобы узнать подробности

Практическая работа по теме: "Определенный интеграл" для студентов колледжа.

Просмотр содержимого документа
«Определенный интеграл.»



Инструкционная карта № 32

Тақырыбы/ Тема: Определенный интеграл.

Мақсаты/ Цель:

  1. Отработать навыки применения таблица основных интегралов и основных свойств интегралов при решении упражнений.

  2. Создать условия для развития коммуникативно-творческих умений: не шаблонно подходить к решению различных задач.

  3. Воспитание познавательной самостоятельности: развитие умения самостоятельно классифицировать, выполнять анализ, оценивать результаты.



Теоретический материал:

Что значит решить определенный интеграл? Решить определенный интеграл – это значит, найти число.

Как решить определенный интеграл? С помощью формулы Ньютона-Лейбница:

Формулу лучше переписать на отдельный листочек, она должна быть перед глазами на протяжении всего урока.

Этапы решения определенного интеграла следующие:

1) Сначала находим первообразную функцию F(x) (неопределенный интеграл). Обратите внимание, что константа C в определенном интеграле не добавляется. Обозначение является чисто техническим, и вертикальная палочка не несет никакого математического смысла, по сути – это просто отчёркивание. Зачем нужна сама запись F(x)?  Подготовка для применения формулы Ньютона-Лейбница.

2) Подставляем значение верхнего предела в первообразную функцию: F(b).

3) Подставляем значение нижнего предела в первообразную функцию: F(a).

4) Рассчитываем (без ошибок!) разность F(b)- F(a) , то есть, находим число.

Готово.

Всегда ли существует определенный интеграл? Нет, не всегда.

Например, интеграла  не существует, поскольку отрезок интегрирования  не входит в область определения подынтегральной функции (значения под квадратным корнем не могут быть отрицательными). А вот менее очевидный пример: . Такого интеграла тоже не существует, так как в точках x= -   , x=  отрезка [-2;3] не существует тангенса. Кстати, кто еще не прочитал методический материал Графики и основные свойства элементарных функций – самое время сделать это сейчас. Будет здорово помогать на протяжении всего курса высшей математики.  

Для того чтобы определенный интеграл вообще существовал, достаточно чтобы подынтегральная функция была непрерывной на отрезке интегрирования.

Из вышесказанного следует первая важная рекомендация: перед тем, как приступить к решению ЛЮБОГО определенного интеграла, нужно убедиться в том, что подынтегральная функция непрерывна на отрезке интегрирования. По студенческой молодости у меня неоднократно бывал казус, когда я подолгу мучался с нахождением трудной первообразной, а когда наконец-то ее находил, то ломал голову еще над одним вопросом: «что за ерунда получилась?». В упрощенном варианте ситуация выглядит примерно так:

???! Нельзя подставлять отрицательные числа под корень! Изначальная невнимательность.

Если для решения (в контрольной работе, на зачете, экзамене) Вам предложен  несуществующий интеграл вроде , то нужно дать ответ, что интеграла не существует и обосновать – почему.

Может ли определенный интеграл быть равен отрицательному числу? Может. И отрицательному числу. И нулю. Может даже получиться бесконечность, но это уже будет несобственный интеграл, коим отведена отдельная лекция.

Может ли нижний предел интегрирования быть больше верхнего предела интегрирования? Может, и такая ситуация реально встречается на практике.

 –  интеграл преспокойно вычисляется по формуле Ньютона-Лейбница.

Без чего не обходится высшая математика? Конечно же, без всевозможных свойств. Поэтому рассмотрим некоторые свойства определенного интеграла.

В определенном интеграле можно переставить верхний и нижний предел, сменив при этом знак:

Например, в определенном интеграле перед интегрированием  целесообразно поменять пределы интегрирования на «привычный» порядок:

 – в таком виде интегрировать  значительно удобнее.

Как и для неопределенного интеграла, для определенного интеграла справедливы свойства линейности:

 – это справедливо не только для двух, но и для любого количества функций.

Пример 1

Вычислить определенный интеграл

Решение:

(1) Выносим константу за знак интеграла.

(2) Интегрируем по таблице с помощью самой популярной формулы . Появившуюся константу  целесообразно отделить от  и вынести за скобку. Делать это не обязательно, но желательно – зачем лишние вычисления?

(3) Используем формулу Ньютона-Лейбница . Сначала подставляем в  верхний предел, затем – нижний предел. Проводим дальнейшие вычисления и получаем окончательный ответ.

Пример 2

Вычислить определенный интеграл

Это пример для самостоятельно решения, решение и ответ в конце урока.

Немного усложняем задачу:

Пример 3

Вычислить определенный интеграл

Решение:

(1) Используем свойства линейности определенного интеграла.

(2) Интегрируем по таблице, при этом все константы выносим – они не будут участвовать в подстановке верхнего и нижнего предела.

(3) Для каждого из трёх слагаемых применяем формулу Ньютона-Лейбница:

СЛАБОЕ ЗВЕНО в определенном интеграле – это ошибки вычислений и часто встречающаяся ПУТАНИЦА В ЗНАКАХ. Будьте внимательны! Особое внимание заостряю на третьем слагаемом:  – первое место в хит-параде ошибок по невнимательности, очень часто машинально пишут  (особенно, когда подстановка верхнего и нижнего предела проводится устно и не расписывается так подробно). Еще раз внимательно изучите вышерассмотренный пример.

Следует заметить, что рассмотренный способ решения определенного интеграла – не единственный. При определенном опыте, решение можно значительно сократить. Например, я сам привык решать подобные интегралы так:

Здесь я устно использовал правила линейности, устно проинтегрировал по таблице. У меня получилась всего одна скобка с отчёркиванием пределов:  (в отличие от трёх скобок в первом способе). И в «целиковую» первообразную функцию, я сначала подставил сначала 4, затем –2, опять же выполнив все действия в уме.

Какие недостатки у короткого способа решения? Здесь всё не очень хорошо с точки зрения рациональности вычислений, но лично мне всё равно – обыкновенные дроби я считаю на калькуляторе.
Кроме того, существует повышенный риск допустить ошибку в вычислениях, таким образом,  студенту-чайнику лучше использовать первый способ, при «моём» способе решения точно где-нибудь потеряется знак.

Однако несомненными преимуществами второго способа является быстрота решения, компактность записи и тот факт, что первообразная  находится в одной скобке.

Совет: перед тем, как использовать формулу Ньютона-Лейбница, полезно провести проверку: а сама-то первообразная найдена правильно?

Так, применительно к рассматриваемому примеру: перед тем, как в первообразную функцию   подставлять верхний и нижний пределы, желательно на черновике проверить, а правильно ли вообще найден неопределенный интеграл? Дифференцируем:

Получена исходная подынтегральная функция, значит, неопределенный интеграл найден верно. Теперь можно и формулу Ньютона-Лейбница применить.

Такая проверка будет не лишней при вычислении любого определенного интеграла.

Таблица основных интегралов.

1). .

2) . .

3). .

4). 14).

5) . 15).

6). 16).

7) . 17).

8) . 18).

9) . 19).

10). 20).



Практическая часть:



1 вариант

2 вариант

3 вариант

4 вариант

5 вариант






Контрольные вопросы:

  1. Почему называется определенным интервалом?

  2. Чем отличается определенный интеграл от неопределенного интеграла?

  3. Напишите формулу Ньютона-Лейбница.

  4. Какими свойствами обладает интеграл?


Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!