СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Нахождение площадей нестандартных фигур

Категория: Геометрия

Нажмите, чтобы узнать подробности

Просмотр содержимого документа
«Нахождение площадей нестандартных фигур»

КГУ ЧЕРНОРЕЦКАЯ СОШ № 1

ПАВЛОДАРСКАЯ ОБЛАСТЬ

ПАВЛОДАРСКИЙ РАЙОН

СЕЛО ЧЕРНОРЕЦК


ТЕМІРБУЛАТ НАЗЕРКЕ

8 КЛАСС


НАХОЖДЕНИЕ ПЛОЩАДЕЙ НЕСТАНДАРТНЫХ ФИГУР



НАПРАВЛЕНИЕ: Математическое моделирование экономических и социальных процессов

СЕКЦИЯ: Прикладная математика


Руководитель проекта: учитель математики, педагог-мастер

Середкин В. П.

Научный консультант: к.п.н. ассоциированный профессор (доцент) факультета Computer Science Торайгыров университета

Даниярова Ж.К.


Павлодар, 2022 г.

ОГЛАВЛЕНИЕ

ЭССЕ

АННОТАЦИЯ

РЕЦЕНЗИЯ

ВВЕДЕНИЕ

ИССЛЕДОВАТЕЛЬСКАЯ ЧАСТЬ

СПОСОБЫ ВЫЧИСЛЕНИЯ ПЛОЩАДИ ФИГУРЫ НА КЛЕТЧАТОЙ БУМАГЕ.

ТРИ СПОСОБА ВЫЧИСЛЕНИЯ ПЛОЩАДИ ВЫПУКЛОГО МНОГОУГОЛЬНИКА.

РАЗБИЕНИЕ.

ДОПОЛНЕНИЕ ДО ПРЯМОУГОЛЬНИКА.

ФОРМУЛА ПИКА.

ТРИ СПОСОБА ВЫЧИСЛЕНИЯ ПЛОЩАДИ НЕВЫПУКЛОГО МНОГОУГОЛЬНИКА.

ДОПОЛНЕНИЕ ДО ПРЯМОУГОЛЬНИКА.

ФОРМУЛА ПИКА.

МЕТОД МОНТЕ-КАРЛО И ПЛОЩАДИ ФИГУР

СРАВНИТЕЛЬНЫЙ АНАЛИЗ СПОСОБОВ НАХОЖДЕНИЯ ПЛОЩАДИ МНОГОУГОЛЬНИКА НА КЛЕТЧАТОЙ БУМАГЕ.

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ


ЭССЕ

В своей работе я рассматриваю вопрос нахождения площадей нестандартных фигур. Все мы знаем определение площади. Площадь указывает размер плоскости, которую занимает фигура. Как мы можем ее найти? Для этого нам нужно знать линейные размеры фигуры и использование геометрические формулы для нахождения площадей. Как определить площадь фигуры неопределенной формы? Для этого можно использовать метод дополнения и разбиения, а можно воспользоваться основной формулой теории вероятности.

Способ разбиение заключается в том, что многоугольник разбивается на прямоугольники и прямоугольные прямоугольники. После нахождения площадей полученных прямоугольников и треугольников, площадь искомого многоугольника находиться путем сложения всех полученных площадей. Способ дополнения основывается на дополнении многоугольника до прямоугольника так, чтобы его стороны проходили через вершины четырехугольника, а затем вычитание лишних частей. Формула Пика позволяет найти площадь фигуры на клетчатой бумаге. Любая фигура изображенная на с листе бумаги делит его на внутреннюю область и внешнюю, а еще есть граничные точки многоугольника.

Так же площадь многоугольника можно найти, используя основную формулу теории вероятности: вероятность равновероятностного события равна отношению положительных исходов к общему числу исходов

Эта формула легла в основу метода Монте-Карло.

Суть метода Монте-Карло в том, что выбирается некоторая плоскость с известной площадью и на нее переноситься фигура нестандартной формы. Далее на эту плоскость вбрасывается некоторое количество точек и выясняется, сколько точек попало на искомую площадь. Эти данные позволяют воспользоваться формулой вероятности для вычисления искомой площади.

Я думаю что метод Монте-Карло более легкий и удобный ,он находит приближенную площадь. В школьном курсе математики я использую метод Монте-Карло , он позволяет более точно вычислять площадь фигур , только в тех случаях , когда будет задействовано больше количество точек.























АННОТАЦИЯ

В школьном курсе математики мы в основном имеем дело с многоугольниками. С проблемой вычисления площади фигур я столкнулась при решении различных задач, суть которых сводилась к тому, что требовалось найти площадь различных многоугольников, которые мы не рассматривали на уроках математики. При изучении математик до 6 класса мы знакомимся только с формулами для вычисления площади квадрата и прямоугольника. Между тем, на практике часто возникает необходимость найти площадь фигуры неправильной формы. Например, необходимость определить площадь территории по плану или карте. Но для площадей сложных фигур отсутствуют общие формулы, аналогичные формулам для многоугольников.

Гипотеза: площадь сложной фигуры может быть измерена приближенными методами с точностью, достаточной для практических целей.

Цель работы: исследовать различные способы вычисления площадей фигур.

Задачи исследования:

1. Изучить литературу по исследуемой теме;

2. Отобрать интересную и понятную информацию для исследования;

3. Найти способы вычисления площади не стандартных фигур.

Объектом исследования являются методы измерения площади фигур

произвольной формы:

1) способы нахождения площадей;

2) Метод Монте-Карло;

Предметом исследования является площадь фигур произвольной формы.

РЕЦЕНЗИЯ


ВВЕДЕНИЕ

В повседневной жизни мы часто встречаемся с понятием площади. Мы говорим: площадь квартиры, площадь садового участка и т.д. Необходимость в понятии «площадь» возникла из жизненных потребностей.

В древности люди использовали для измерения длин те измерительные приборы, которые всегда были при себе. Позже возникла потребность в измерении и сравнении разнообразных «фигур», например земельных участков. Было необходимо ввести величину, которая характеризовала бы величину той части плоскости, которую занимает фигура. Эту величину назвали площадью.

Измерение площадей является одним из самых древних разделов геометрии. В частности, название “геометрия” означает “землемерие”, т.е. связано именно с измерением площадей. Основы этой науки были заложены в Древнем Египте, где после каждого разлива Нила приходилось заново производить разметку участков, покрытых плодоносным илом, т. е. вычислять их площади. Вавилоняне, так же, как и египтяне измеряли большей частью простейшие фигуры, встречающиеся при межевании земель, возведении стен и насыпей, строительстве плотин и каналов и т.п. Сохранилось немало планов земельных угодий, разделенных на прямоугольники, трапеции и треугольники, а также планов различных строений, свидетельствующих, что вавилонский землемер или архитектор должен был хорошо чертить и проводить геометрические расчеты.

Многие ученые решали проблему вычисления площади фигуры. В историю с понятием площади вошли имена Евклида, Архимеда, Пифагора, Герона Александрийского, Рене Декарта, Пьера Ферма, Георга Пика и др. Ими открыто большое количество различных формул и способов для вычисления площади фигуры.


СПОСОБЫ ВЫЧИСЛЕНИЯ ПЛОЩАДИ ФИГУРЫ НА КЛЕТЧАТОЙ БУМАГЕ.

При изучении вычисления площадей многоугольников на клетчатой бумаге я заметила, что все задачи строятся на понятии узла. Узел напоминает узел в рыболовной сетке - пересечение горизонтальных и вертикальных линий. Все задачи достаточно разнообразны и занимательны, они заставляют думать, размышлять, анализировать, искать аналогии.

Рассмотрим вычисление площади одной и той же фигуры тремя способами и сравним результат вычисления. [1, с.36]

ТРИ СПОСОБА ВЫЧИСЛЕНИЯ ПЛОЩАДИ ВЫПУКЛОГО МНОГОУГОЛЬНИКА.

РАЗБИЕНИЕ.

Смысл данного способа состоит в том, что многоугольник разрезается на прямоугольники и (или) прямоугольные треугольники с вершинами в узлах сетки. Тогда площадь фигуры можно сосчитать по формуле:

ДОПОЛНЕНИЕ ДО ПРЯМОУГОЛЬНИКА.

Смысл данного способа – это дополнение многоугольника до прямоугольника так, чтобы его стороны проходили через вершины четырехугольника, а затем вычитание лишних частей. Получим, что площадь фигуры равна:

ФОРМУЛА ПИКА.

Любая фигура, изображенная на листе бумаги делит его на внутреннюю область и внешнюю, а еще есть граничные точки многоугольника. Нас интересуют внутренние узлы и узлы, которые лежат на границе многоугольника. Тогда формула выглядит так

где В - количество внутренних узлов, а Г - количество узлов на границе многоугольника. Эта формула получила название формула Пика в честь австрийского математика Георга Пика которая появилась в его восьмистраничной работе 1899 года, опубликованной в Праге. Используя рисунок В= 17, Г = 14, получаем

Вычисляя площадь выпуклого многоугольника тремя способами, я получила один и тот же результат.

ТРИ СПОСОБА ВЫЧИСЛЕНИЯ ПЛОЩАДИ НЕВЫПУКЛОГО МНОГОУГОЛЬНИКА.

Способ разбиения не подходит для данной фигуры, т.к. невозможно разбить ее на прямоугольники и (или) прямоугольные треугольники с вершинами в узлах сетки.

ДОПОЛНЕНИЕ ДО ПРЯМОУГОЛЬНИКА.

Достраивая многоугольник до прямоугольника, и отсекая лишние части, найдем площадь фигуры

ФОРМУЛА ПИКА.

При подсчете внутренних узлов многоугольника и узлов, лежащих на границе, получим, что В = 5; Г = 4;

И опять я получила один и тот же результат.

Вычисление площади кольца по формуле Пика.

А если взять не многоугольник, а, например, кольцо и перенести его на клетчатую бумагу? Понятно, что первый и второй способы не удастся использовать. Применим формулу Пика и сравним полученный результат с результатом, полученным используя формулу для вычисления площади круга.

Возьмем кольцо, которое построим с помощью двух окружностей с радиусами R=4 и r = 2.

Вычислим площадь кольца с помощью формулы Пика: В=32, Г=8,

Вычислим площадь кольца по формуле площади круга, округлив число π до единиц.

Округлим теперь π до десятых:

А если округлить число π до сотых, то получим:

Сравнив результаты, можно сделать вывод, что существует погрешность в вычислении площади по формуле Пика и чем точнее число π, тем она больше. Следовательно, данную формулу можно применять только для вычисления площадей многоугольников. [2, с.17], [4]


МЕТОД МОНТЕ-КАРЛО И ПЛОЩАДИ ФИГУР

Рассмотрим достаточно интересный метод, который применятся в программировании, алгоритмизации и математике.

Метод основан на применении теории вероятности к алгоритмическим процессам нахождения приближенных значений. Значение отыскиваются путем сравнения результатов равновероятностных событий на два множества, одно из которых полностью включает другое. Полностью включенное множество как раз объявляется как требуемое к отысканию. Более крупное множество, должно быть заведомо с известным значением.

Основная формула теории вероятности: вероятность равновероятного события равна отношению положительных исходов к общему числу исходов

М етод Монте-Карло основан на равновероятном распределении исходов по всему множеству, включающему в себя и неизвестное множество.

Возьмем множество А и множество В которое полностью принадлежит множеству А графически это можно представить в следующем виде рисунок 3.

Исходами в методе Монте-Карло являются выпадения точек в случайных координатах в общее множество часть из которых попадет и во включенное подмножество в формуле вероятности для метода Монте-Карло , N – это число всех выпавших точек в общее множество, в нашем примере это множество А, а n – это количество этих же точек попавших во множество В.

Если мы проведем подобное для нашей схемы с множествами, расположим на множестве А равновероятным случайные координаты точки то мы увидим что некоторые из них находятся в множестве В их мы и примем за n и можно подсчитать вероятность P это получиться вероятность попадания точек во внутреннее множество.

Как это может помочь при решении задач с площадями? Нам будет необходим следующий постулат – Отношение числа исходов с внутренним множеством которое требуется найти на число исходом с общим множеством приблизительно равно отношению сравниваемых параметром этих множеств в нашем примере отношение числа точек в указанных множествах будет примерно таким же, как и отношение площадей.

Далее по этой пропорции выражаем площадь В

В эту формулу можно будет подставлять числа для расчета.

Р ассмотрим пример: требуется найти площадь листа дерева.

Форма листа клена очень сложная рисунок 5. Вычислить площадь трудно. Но используя метод Монте-Карло данную площадь найти легко.

С формируем основные понятия для этой задачи.

Так как мы ищем площадь кленового листа то это будет искомая площадь В, а общую область нужно выбрать больше с известной площадью например лист А4 рисунок 6. Теперь сформируем общее множество и получим объединенное выражение.

Кладем на сканер лист клена сверху накрываем листом А4 таким образом и лист клена и лист А4 будут в одном разрешении сканируем и получаем изображение рисунок 7.

Используя метод Монте-Карло для нашего изображения. Прокинем на изображение 1000 точек. Из этого числа на лист клена выпало 480 точек. Площадь листа А4 равна 623,7 см2. Тогда площадь листа мы сможем вычислить по формуле

Ниже приводится сравнительная таблица эксперементальных опытов представленной задачи. На основании результатов исследования можно сделать вывод: чем большее количество точек мы будем вбрасывать на плоскость тем точнее будет получаться результат нахождения площади.

СРАВНИТЕЛЬНАЯ ТАБЛИЦА РАСЧЕТОВ

опыта

N

n

S(A), кв. см.

S(B), кв. см.

1

1000

480

623,7

299,38

2

1500

700

623,7

291,06

3

2000

950

623,7

296,26

4

2500

1200

623,7

299,38

5

3000

1400

623,7

291,06

6

3500

1650

623,7

294,03

7

4000

1900

623,7

296,26

8

4500

2150

623,7

297,99

9

5000

2400

623,7

299,38

10

5500

2650

623,7

300,51


Р ассмотрим еще один пример применения метода Монте-Карло - задачу нахождения площади острова.

Задача: По аэрофотосъемки некоторой области океана с известной площадью найти приблизительно площадь острова на фото. Известно, что территория на снимке занимает площадь 27 кв.км рисунок 8.

Площадь острова из-за неровных краев и сложной не прямоугольной формы нам неизвестна как же можно, найти, площадь острова не зная функции кривых периметров. В данном случае найти площадь острова нам поможет метод Монте-Карло.

П редположим, что мы кинули на карте 30 случайных точек (рисунок 9) 12 из них попали в область острова также по условию нам известна площадь аэрофотосъемки 27 км2 подставим числа в формулу и получаем приближенную площадь острова

В сравнительной таблице расчетов приводятся результаты экспериментальных опытов. И как в предыдущей задаче с кленовым листом мы приходим к выводу, что при увеличении количества вбрасываемых точек результаты становятся более точными

СРАВНИТЕЛЬНАЯ ТАБЛИЦА РАСЧЕТОВ

опыта

N

n

S(A) кв.км.

S(B)кв. км.

1

30

12

27

10,8

2

40

17

27

11,475

3

50

27

27

14,58

4

60

32

27

14,4

5

70

40

27

15,428571

6

80

51

27

17,2125

7

90

64

27

19,2

8

100

72

27

19,44

9

110

81

27

19,881818

10

120

91

27

20,475


СРАВНИТЕЛЬНЫЙ АНАЛИЗ СПОСОБОВ НАХОЖДЕНИЯ ПЛОЩАДИ МНОГОУГОЛЬНИКА НА КЛЕТЧАТОЙ БУМАГЕ.

Разбиение. Этот способ прост в подсчёте площадей фигур, которые разбиваются на прямоугольники и (или) прямоугольные треугольники с вершинами в узлах сетки. К ним относятся выпуклые многоугольники. К минусам можно отнести то, что в использовании этого способа приходится производить множество действий, а так же невозможность подсчёта площади фигур, которые не разбиваются на прямоугольники и (или) прямоугольные треугольники с вершинами в узлах сетки.

Дополнение до прямоугольника. Этот способ так же прост в подсчёте при вычислении площади при небольшом количестве фигур, площадь которых необходимо отнять. Минусы этого способа - сложность подсчёта площади многоугольников необычной формы, большое количество фигур, площадь которых необходимо отнять, а также невозможность подсчёта площади фигур, не относящихся к многоугольникам.

Формула Пика. К плюсам я отнесла то, что легко вычисляется площадь многоугольника с необычной формой, в отличие от предыдущих способов, краткость формулы, а также возможность вычисления приближенного значения площади местности по карте, представив ее в виде многоугольника, перенеся ее на клетку. Минусами этого способа считаю сложность вычисления площади фигуры с большим количеством узлов, а так же, если в фигуре есть «спорные» узлы (узлы, лежащие близко к стороне многоугольника). Вычисляя площадь фигур, не относящихся к многоугольникам, результат получается не точным.

Метод Монте-Карло. Позволяет более точно вычислять площадь фигур, только в тех случаях, когда будет задействовано большое количество точек.

ЗАКЛЮЧЕНИЕ

Изучив различные источники, выяснилось, что существует различные способы вычисления фигур по клеткам, но для меня были интересны и понятны три: разбиение, дополнение до прямоугольника и вычисления по формуле Пика. Также интересным способом нахождения площади произвольной фигуры является метод Монте-Карло.

Моя гипотеза – о том, что если геометрическая фигура изображена на клетчатой бумаге, то ее площадь можно вычислить различными способами и убедиться, что результаты вычислений будут одинаковыми, частично подтвердилась. Рассмотрев все три способа, я пришла к выводу, что не для всякой фигуры можно приметить каждый из них. У каждого из них есть свои плюсы и минусы.

Все три способа можно применить только для выпуклых многоугольников, перенеся их на клетчатую поверхность.

Формула Пика интересна своей простотой. И пусть она при вычислении площадей, не относящихся к многоугольникам, дает приближенное значение, можно легко оценить площадь той или иной территории на карте.

Как оказалось метод Монте-Карло является пригодным для приближенного нахождения площадей фигур сложной формы.

СПИСОК ЛИТЕРАТУРЫ

1. Жарковская Н. М., Рисс Е. А. Геометрия клетчатой бумаги. Формула Пика // Математика, 2009, № 17, с. 24-25.

2. История математики с древнейших времен до начала XIX столетия, под редакцией Ю.П. Юшкевича., издательство Наука., М., 1970г

3. Смирнова И. М., Смирнов В. А. Геометрия на клетчатой бумаге. – М.:

Чистые пруды, 2009.





























Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!