СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Комплексные числа. Лекция. Задания.

Категория: Математика

Нажмите, чтобы узнать подробности

для урока. конспект.

Просмотр содержимого документа
«Комплексные числа. Лекция. Задания.»

Комплексные числа и действия с ними.

Как известно, имеются различные числовые системы: натуральных, целых, рациональных, действительных чисел. Каждая из этих числовых систем моделирует определенные типы количественных отношений действительного мира, другими словами, предназначена для решения определенного вида задач. Исторически почти одновременно возникли понятия натурального и положительного рационального (дробного) чисел. При помощи натуральных чисел решаются произвольные задачи, связанные с определением количества элементов любого конечного множества, т. е. решается любая задача счета. В множестве рациональных чисел решаются любые задачи, связанные с операцией деления, которые, как легко видеть, в множестве натуральных чисел не всегда имеют решения. Намного позже люди пришли к понятию отрицательного числа. Необходимость введения этого понятия связана с моделированием процессов, величин, которые меняются в двух противоположных направлениях. Примерами таких величин являются температура, уровень реки, прибыль, скорость прямолинейного движения некоторого тела.

Таким образом, на каждом этапе необходимость расширения понятия числа связана с тем, что в имеющемся множестве чисел не всегда решаются отдельные важные задачи, т.е. не всегда выполнимы некоторые операции и новые числа вводятся так, чтобы рассматриваемые операции стали выполнимыми.

Мнимые числа, которыми мы дополняем действительные числа, записываются в виде bi, где i – мнимая единица, причем i2 = - 1. Исходя из этого, получим следующее определение комплексного числа.

Определение. Комплексным числом называется выражение вида a + bi, где a и b - действительные числа. При этом выполняются условия:

а) Два комплексных числа a1 + b1i и a2 + b2i равны тогда и только тогда, когда a1=a2, b1=b2.

б) Сложение комплексных чисел определяется правилом:

(a1 + b1i) + (a2 + b2i) = (a1 + a2) + (b1 + b2) i.

в) Умножение комплексных чисел определяется правилом:

(a1 + b1i) (a2 + b2i) = (a1a2 - b1b2) + (a1b2 - a2b1) i.


2. Алгебраическая форма комплексного числа.

Запись комплексного числа в виде a + bi называют алгебраической формой комплексного числа, где а – действительная часть, bi – мнимая часть, причем b – действительное число.

Комплексное число a + bi считается равным нулю, если его действительная и мнимая части равны нулю: a = b = 0

Комплексное число a + bi при b = 0 считается совпадающим с действительным числом a: a + 0i = a.

Комплексное число a + bi при a = 0 называется чисто мнимым и обозначается bi: 0 + bi = bi.

Два комплексных числа z = a + bi и = abi, отличающиеся лишь знаком мнимой части, называются сопряженными.





3.Действия над комплексными числами в алгебраической форме.

Над комплексными числами в алгебраической форме можно выполнять следующие действия.

1) Сложение.

Определение. Суммой комплексных чисел z1 = a1 + b1i и z2 = a2 + b2i называется комплексное число z, действительная часть которого равна сумме действительных частей z1 и z2, а мнимая часть - сумме мнимых частей чисел z1 и z2, то есть z = (a1 + a2) + (b1 + b2)i.

Числа z1 и z2 называются слагаемыми.

Сложение комплексных чисел обладает следующими свойствами:

1º. Коммутативность: z1 + z2 = z2 + z1.

2º. Ассоциативность: (z1 + z2) + z3 = z1 + (z2 + z3).

3º. Комплексное число abi называется противоположным комплексному числу z = a + bi. Комплексное число, противоположное комплексному числу z, обозначается -z. Сумма комплексных чисел z и -z равна нулю: z + (-z) = 0

Пример 1. Выполните сложение (3 – i) + (-1 + 2i).

(3 – i) + (-1 + 2i) = (3 + (-1)) + (-1 + 2) i = 2 + 1i.

2) Вычитание.

Определение. Вычесть из комплексного числа z1 комплексное число z2, значит найти такое комплексное число z, что z + z2 = z1.

Теорема. Разность комплексных чисел существует и притом единственна.

Пример 2. Выполните вычитание (4 – 2i) - (-3 + 2i).

(4 – 2i) - (-3 + 2i) = (4 - (-3)) + (-2 - 2) i = 7 – 4i.

3) Умножение.

Определение. Произведением комплексных чисел z1=a1+b1i и z2=a2+b2i называется комплексное число z, определяемое равенством: z = (a1a2b1b2) + (a1b2 + a2b1)i.

Числа z1 и z2 называются сомножителями.

Умножение комплексных чисел обладает следующими свойствами:

1º. Коммутативность: z1z2 = z2z1.

2º. Ассоциативность: (z1z2)z3 = z1(z2z3)

3º. Дистрибутивность умножения относительно сложения:

(z1 + z2) z3 = z1z3 + z2z3.

4º. z · = (a + bi)(abi) = a2 + b2 - действительное число.

На практике умножение комплексных чисел производят по правилу умножения суммы на сумму и выделения действительной и мнимой части.

В следующем примере рассмотрим умножение комплексных чисел двумя способами: по правилу и умножением суммы на сумму.

Пример 3. Выполните умножение (2 + 3i) (5 – 7i).

1 способ. (2 + 3i) (5 – 7i) = (2 5 – 3 (- 7)) + (2 (- 7) + 3 5)i =

= (10 + 21) + (- 14 + 15)i = 31 + i.

2 способ. (2 + 3i) (5 – 7i) = 2 5 + 2 (- 7i) + 3i 5 + 3i (- 7i) =

= 10 – 14i + 15i + 21 = 31 + i.

4) Деление.

Определение. Разделить комплексное число z1 на комплексное число z2, значит найти такое комплексное число z, что z · z2 = z1.

Теорема. Частное комплексных чисел существует и единственно, если z2 ≠ 0 + 0i.

На практике частное комплексных чисел находят путем умножения числителя и знаменателя на число, сопряженное знаменателю.

Пусть z1 = a1 + b1i, z2 = a2 + b2i, тогда .

В следующем примере выполним деление по формуле и правилу умножения на число, сопряженное знаменателю.

Пример 4. Найти частное .

1 способ.

.

2 способ.

.

5) Возведение в целую положительную степень.

а) Степени мнимой единицы.

Пользуясь равенством i2 = -1, легко определить любую целую положительную степень мнимой единицы. Имеем:

i3 = i2 i = -i,

i4 = i2 i2 = 1,

i5 = i4 i = i,

i6 = i4 i2 = -1,

i7 = i5 i2 = -i,

i8 = i6 i2 = 1 и т. д.

Это показывает, что значения степени in, где n – целое положительное число, периодически повторяется при увеличении показателя на 4.

Поэтому, чтобы возвести число i в целую положительную степень, надо показатель степени разделить на 4 и возвести i в степень, показатель которой равен остатку от деления.

Пример 5. Вычислите: (i 36 + i 17) · i 23.

i 36 = (i 4)9 = 19 = 1,

i 17 = i 4 4+1 = (i 4)4 i = 1 · i = i.

i 23 = i 4 5+3 = (i 4)5 i3 = 1 · i3 = - i.

(i 36 + i 17) · i 23 = (1 + i) (- i) = - i + 1= 1 – i.

б) Возведение комплексного числа в целую положительную степень производится по правилу возведения двучлена в соответствующую степень, так как оно представляет собой частный случай умножения одинаковых комплексных сомножителей.

Пример 6. Вычислите: (4 + 2i)3

(4 + 2i)3 = 43 + 3 42 2i + 3 4 (2i)2 + (2i)3 = 64 + 96i – 48 – 8i = 16 + 88i.



Упражнения

1.Выполнить сложение комплексних чисел:

  1. (3+2ί) + (-1-5ί) =

  2. (4-5ί) + (2-ί) =

  3. (2+3ί) + (6-3ί) =

  4. (10 – 3ί) + (-10+3ί) =

2.Выполнить вычитание комплексних чисел.

  1. (3+4ί) – (1+2ί) =

  2. (-5+2ί) – (2+ί) =

  3. (6+7ί) – (6-5ί) =

  4. (0,3+2,5ί) – (-0,75+1,5ί) =

  5. (2-2ί) – (2+3ί) =

  6. 1+1/2) – (1/4-3/5) =

3. Выполнить умножение комплексних чисел.

  1. 1) (4-5ί)(3+2ί) =

2)(3-ί)(2+5ί) =

3)8ί·3ί·3 =

4)(2-ί)(-5) =

4. Найти произведение комплексних чисел.

  1. (3+5ί)(3-5ί) =

  2. (2+ί)(2-ί) =

  3. (4+3ί)(4-3ί) =

  4. (х+уί)( х-уί) =

  5. (3/4+2/5ί)(3/4-2/5ί) =

5. Разложить на множители двучлен

1)а+9 =

2)16m²+25n² =

3)49+36 =

4)а+16 =

5)в+7 =

6. Найти частное комплексних чисел.

1) (2+5ί)/(3-2ί) =

2) (3+ί)/ί =

7. Возвести в степень двучлени:

  1. (2+5ί)² =

  2. (3+2)³ =

  3. (1+ί)² =

  4. (1-ί) ² =

  5. (1-ί) =

  6. (1+ί) =





Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!