СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Солнечные батареи на основе теллурида кадмия смогут стать выгоднее природного газа

Категория: Физика

Нажмите, чтобы узнать подробности

CdTe это относительно новый конкурент кремния в области солнечной энергетики. При сравнимой эффективности преобразования и лучшей цене, фотоэлементы на базе теллурида кадмия больше приспособлены к работе в жаркой среде с высокой влажностью. Несмотря на преимущества, их доля на рынке сегодня составляет менее 10%, виной чему сложное, негибкое и малопродуктивное производство.

Просмотр содержимого документа
«Солнечные батареи на основе теллурида кадмия смогут стать выгоднее природного газа»

Солнечные батареи на основе теллурида кадмия смогут стать выгоднее природного газа

Музафарова Султанпаша Анваровна

Кандидат физико-математических наук,

"Отличник народного образования ",

Заслуженный наставник молодежи Узбекистана "

41 школа Шайхонтохурского района города Ташкента, Узбекистан

E- mail: [email protected]

Эффективный, безопасный и экономичный способ получения теллурида кадмия (CdTe), разработанный коллективом Вашингтонского университета (WSU), предоставляет индустрии солнечной энергетики шанс стать более конкурентоспособной.

Исследователи продемонстрировали неслыханную производительность их метода: за один день в печи в условиях высокого давления они выращивали более килограмма высокочистого кристаллического теллурида кадмия- CdTe cоединение группы А2В6, получая выигрыш в себестоимости до 45% в сравнении со стандартными промышленными технологиями. Новый метод хорошо масштабируется и в конечном итоге может сделать солнечную энергию дешевле природного газа.

CdTe это относительно новый конкурент кремния в области солнечной энергетики. При сравнимой эффективности преобразования и лучшей цене, фотоэлементы на базе теллурида кадмия больше приспособлены к работе в жаркой среде с высокой влажностью. Несмотря на преимущества, их доля на рынке сегодня составляет менее 10%, виной чему сложное, негибкое и малопродуктивное производство. Кристаллы CdTe обычно получают, нагревая исходные материалы в запаянной стеклянной трубке — процедура долгая и взрывоопасная, а также расточительная (стеклянные трубки используются одноразово).

В новой технике используется прочный графитовый тигель. Его помещают в печь Бриджмена высокого давления. Пребывание материала в такой среде устраняет риск взрыва и облегчает внесение легирующих добавок, улучшающих свойства получаемого монокристалла.

В 2006 году благодаря добавке фосфора, команде WSU с коллегами из Университета Теннесси и Национальной Лаборатории Возобновляемой Энергии (NREL) преодолели барьер в 1 вольт, то, чего безуспешно пытались добиться во всем мире на протяжении шести десятилетий.

В новой работе, также выполнявшийся при участии NREL, и с Nious Technologies в качестве производственного партнёра, для легирования использовался мышьяк. Высокое давление (порядка 80 атмосфер) препятствовало утечке летучей добавки из кристалла и из напыляемой тонкой плёнки, что позволило избежать повторного легирования теллурида кадмия и связанных с этим проблем неравномерного распределения примеси.

Напомним, что утилизация отработавших свое солнечных панелей — всевозрастающая проблема для стран, задавшихся целью перейти на электроэнергию из возобновляемого источника — солнечного света. Пришедшие в негодность фотоэлектрические панели создают новую проблему — потенциально опасные отходы, которые должны быть утилизированы надлежащим образом.

Ученые из Массачусетского технологического института улучшили прозрачный защитный материал, в 10 раз повысив его электропроводностью. При внедрении в высокоэффективные солнечные батареи, покрытие повышает их стабильность и производительность.

Исследование было проведено командой, включавшей Мейсама Гейдари Гарачешмеха, профессоров Карен Глисон и Цзина Конга, сообщает sciencedaily.com. Его результаты опубликованы в Science Advances.

Целью проекта был поиск материала, сочетающего прозрачность и электропроводность. Структура полезна для различных систем, включая сенсорные экраны и солнечные батареи, объяснила Глисон. Чаще всего для этих целей используется оксид титана и индия (ITO). Но материал хрупкий и разрушается в процессе эксплуатации.

Глисон с коллегами улучшили гибкую версию покрытия 2 года назад. Но оно продолжало уступать ITO. Новый, упорядоченный материал в 10 раз превосходит показатели предшественника.

Прозрачность и проводимость измеряется в Сименсах/см. У ITO показатель находится в диапазоне 6 000 – 10 000 См/см. От нового материала требовалось хотя бы 35 См/см, но ученые добились 3 000 См/см и продолжают улучшать структуру.

Материал представляет собой тонкий слой органического полимера PEDOT, созданного путем окислительного химического осаждения из паровой фазы. Процесс обеспечивает горизонтальное выравнивание кристаллов, дающее высокую электропроводность. Осаждение дополнительно улучшает параметр, уменьшая расстояние между полимерными цепочками.

Демонстрируя потенциал продукта, команда внедрила его в перовскитную солнечную батарею. В опытах PEDOT наносился на основание, диаметром 15 см. Но процесс подходит для более масштабного, рулонного производства.

«Его легко адаптировать для промышленности, — сказал Гарачешмех. – Покрытие обрабатывается при 140°С – значительно меньшей температуре, чем требуют альтернативные материалы».
Осаждение позволяет наносить покрытие прямо на пластиковое или другое основание, точно повторяя рельеф. Так, оказавшись на ткани, он сохранит ее воздухопроницаемость.

Команде еще предстоит доказать работоспособность системы в долгосрочной перспективе. Но авторы не видят препятствий для масштабирования.

1



Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!