СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Понятие компьютерной сети, ее назначение. Классификация компьютерных сетей.

Категория: Информатика

Нажмите, чтобы узнать подробности

Ознакомление учащихся с понятием компьютерной сети;  классификацией компьютерной сети. Формирование общих представлений о назначении компьютерной сети

Просмотр содержимого документа
«Понятие компьютерной сети, ее назначение. Классификация компьютерных сетей.»

Тема: Понятие компьютерной сети, ее назначение. Классификация компьютерных сетей.


Цели:

  • Ознакомление учащихся с понятием компьютерной сети;

  • Ознакомление с классификацией компьютерной сети;

  • Формирование знаний о целях и задачах компьютерной сети;

  • Формирование общих представлений о назначении компьютерной сети.

Оборудование:

  • учебная программа

  • рабочая программа

  • конспект лекций (электронный и бумажный вариант)

  • методическая разработка занятия

Литература:

Обязательная:

  1. Семакин И.Г., Залогова Л.А. и др. Информатика и ИКТ, Базовый курс: Учебник для 9 класса. – М.:БИНОМ. Лаборатория знаний, 2012.

  2. Задачник-практикум по информатике: Учебное пособие для средней школы/Под редакцией И.Г. Семакина, Е.К. Хеннера,. – М.:БИНОМ. Лаборатория знаний, 2008

Дополнительно:

    1. Семакин И.Г., Вараскин Г.С. Структурированный конспект базового курса. – М.:БИНОМ. Лаборатория знаний, 2004

    2. Семакин И.Г. Шеина Т.Ю. Преподавание базового курса информатики в средней школе: Методическое пособие. – М.:БИНОМ. Лаборатория знаний, 2009

Ход занятия

История возникновения и развития компьютерных сетей

Развитие компьютерных сетей связано как с развитием собственно ЭВМ, входящих в состав сети, так и с развитием средств телекоммуникаций.

Работы по созданию компьютерных сетей начались ещё в 60-х годах ХХ века. Прообразом компьютерных сетей явились системы телеобработки данных (СТД), построенные на базе больших (а позже и миниЭВМ).

В качестве средств передачи данных использовалась существующая телефонная сеть. Основными элементами СТД являются модемы, абонентские пункты и устройства коммутации. Система СТД оперировала только аналоговыми сигналами.

Основным недостатком СТД является невысокое быстродействие (9600 бит/с, реально 2400 бит/с). Поэтому одним из направлений совершенствования СТД явилась разработка цифровых телефонных коммутаторов.

Вторым существенным недостатком СТД является возможность передачи данных по каналу связи в один и тот же момент времени только с одной скоростью. Этот недостаток был преодолен использованием впервые в 70-х годах в США коммуникаций кабельного телевидения, позволяющих вести широкополосную передачу (ШП).

Третьим направлением перехода к сетям была разработка высокоскоростных шин для обеспечения взаимодействия нескольких больших ЭВМ.

Четвёртым направлением развития сетей была реализация распределённой обработки данных.

К середине 80-х годов, с появлением ПЭВМ все отмеченные тенденции развития сетей стали сближаться, что привело к разработке современных компьютерных сетей.

Компьютерные сети — это системы компьютеров, объединенных каналами передачи данных, обеспечивающие эффективное предоставление различных информационно-вычислительных услуг пользователям посредством реализации удобного и надежного доступа к ресурсам сети.

Информационные системы, использующие возможности компьютерных сетей, обеспечивают выполнение следующих задач:

  • хранение и обработка данных;

  • организация доступа пользователей к данным;

  • передача данных и результатов обработки данных пользователям.

Эффективность решения перечисленных задач обеспечивается:

  • дистанционным доступом пользователей к аппаратным, программным и информационным ресурсам;

  • высокой надежностью системы;

  • возможностью оперативного перераспределения нагрузки;

  • специализацией отдельных узлов сети для решения определенного класса задач;

  • решением сложных задач совместными усилиями нескольких узлов сети;

  • возможностью осуществления оперативного контроля всех узлов сети.

Основные показатели качества компьютерных сетей включают следующие элементы: полнота выполняемых функций, производительность, пропускная способность, надежность сети, безопасность информации, прозрачность сети, масштабируемость, интегрируемость, универсальность сети.

Виды компьютерных сетей

Компьютерные сети, в зависимости от охватываемой территории, подразделяются на:

  • локальные (ЛВС, LAN — Local Area Network);

  • региональные (PBC, MAN — Metropolitan Area Network);

  • глобальные (ГВС, WAN — Wide Area Network).

В локальной сети абоненты находятся на небольшом (до 10-15 км) расстоянии друг от друга. К ЛВС относятся сети отдельных предприятий, фирм, банков, офисов, корпораций и т. д.

РВС связывают абонентов города, района, области. Обычно расстояния между абонентами РВС составляют десятки-сотни километров.

Глобальные сети соединяют абонентов, удаленных друг от друга на значительное расстояние, часто расположенных в различных странах или на разных континентах.


По признакам организации передачи данных компьютерные сети можно разделить на две группы:

  • последовательные;

  • широковещательные.

В последовательных сетях передача данных осуществляется последовательно от одного узла к другому. Каждый узел ретранслирует принятые данные дальше. Практически все виды сетей относятся к этому типу.

В широковещательных сетях в конкретный момент времени передачу может вести только один узел, остальные узлы могут только принимать информацию.

Топологии компьютерных сетей

Топология представляет физическое расположение сетевых компонентов (компьютеров, кабелей и др.). Выбором топологии определяется состав сетевого оборудования, возможности расширения сети, способ управления сетью.

Существуют следующие топологии компьютерных сетей:

  • шинные (линейные, bus);

  • кольцевые (петлевые, ring);

  • радиальные (звездообразные, star);

  • смешанные (гибридные).

Практически все сети строятся на основе трех базовых топологий: топологии "шина", "звезда" и "кольцо". Базовые топологии достаточно просты, однако на практике часто встречаются довольно сложные комбинации, сочетающие свойства и характеристики нескольких топологий.

В топологии "шина", или "линейная шина" (linear bus), используется один кабель, именуемый магистралью или сегментом, к которому подключены все компьютеры сети (рис. 1). Эта топология является наиболее простой и распространенной реализацией сети.

Так как данные в сеть передаются лишь одним компьютером, производительность сети зависит от количества компьютеров, подключенных к шине. Чем больше компьютеров, тем медленнее сеть.

Зависимость пропускной способности сети от количества компьютеров в ней не является прямой, так как, кроме числа компьютеров, на быстродействие сети влияет множество других факторов: тип аппаратного обеспечения, частота передачи данных, тип сетевых приложений, тип сетевого кабеля, расстояние между компьютерами в сети.

Рисунок 1. Сеть с шинной топологией

"Шина" является пассивной топологией — компьютеры только "слушают" передаваемые по сети данные, но не передают их от отправителя к получателю. Выход из строя какого-либо компьютера не оказывает влияния на работу всей сети. В активных топологиях компьютеры регенерируют сигналы с последующей передачей их по сети.

Основой последовательной сети с радиальной топологией (топологией "звезда") является специальный компьютер — сервер, к которому подключаются рабочие станции, каждая по своей линии связи. Вся информация передается через сервер, в задачи которого входит ретрансляция, переключение и маршрутизация информационных потоков в сети (рис. 2). Такая сеть является аналогом системы телеобработки, в которой все абонентские пункты содержат в своем составе компьютер.

Рисунок 2. Сеть с топологией "звезда"

Недостатками такой сети являются: высокие требования к вычислительным ресурсам центральной аппаратуры, потеря работоспособности сети при отказе центральной аппаратуры, большая протяженность линий связи, отсутствие гибкости в выборе пути передачи информации. Если выйдет из строя рабочая станция (или кабель, соединяющий ее с концентратором), то лишь эта станция не сможет передавать или принимать данные по сети. На остальные рабочие станции в сети этот сбой не повлияет.

При использовании топологии "кольцо" компьютеры подключаются к кабелю, замкнутому в кольцо (рис. 3). Сигналы передаются в одном направлении и проходят через каждый компьютер. Каждый компьютер является повторителем, усиливая сигналы и передавая их следующему компьютеру. Если выйдет из строя один компьютер, прекращает функционировать вся сеть.

Рисунок 3. Сеть с кольцевой топологией

Способ передачи данных по кольцевой сети называется передачей маркера. Маркер последовательно, от компьютера к компьютеру, передается до тех пор, пока его не получит тот компьютер, который должен передать данные. Передающий компьютер добавляет к маркеру данные и адрес получателя и отправляет его дальше по кольцу.

Данные передаются через каждый компьютер, пока не окажутся у того, чей адрес совпадает с адресом получателя. Далее принимающий компьютер посылает передающему сообщение — подтверждение о приеме данных. Получив сообщение — подтверждение, передающий компьютер создает новый маркер и возвращает его в сеть.

Техническое обеспечение компьютерных сетей

Техническое обеспечение компьютерных сетей включает следующие компоненты:

  • серверы, рабочие станции;

  • каналы передачи данных;

  • интерфейсные платы и устройства преобразования сигналов;

  • маршрутизаторы и коммутационное оборудование.

Рабочая станция — компьютер, через который пользователь получает доступ к ресурсам сети. Часто рабочую станцию, так же как и пользователя сети, называют клиентом сети.

Сервер — это предназначенный для обработки запросов от всех рабочих станций сети многопользовательский компьютер, предоставляющий этим станциям доступ к общим системным ресурсам. Сервер работает под управлением сетевой операционной системы. Наиболее важным требованием, которое предъявляется к серверу, является высокая производительность и надежность работы.

Сервер приложений — это работающий в сети компьютер большой мощности, имеющий программное обеспечение (приложения), с которым могут работать клиенты сети.

Преимущества использования компьютерных сетей

Рассмотрим преимущества, получаемые при сетевом объединении персональных компьютеров.

Разделение ресурсов

Разделение ресурсов позволяет экономно использовать ресурсы, например, управлять периферийными устройствами, такими как лазерные печатающие устройства, со всех присоединенных рабочих станций.

Разделение данных

Разделение данных предоставляет возможность доступа и управления базами данных с периферийных рабочих мест, нуждающихся в информации

Разделение программных средств

Разделение программных средств предоставляет возможность одновременного использования централизованных, ранее установленных программных средств.

Разделение ресурсов процессора

При разделение ресурсов процессора возможно использование вычислительных мощностей для обработки данных другими системами, входящими в сеть. Предоставляемая возможность заключается в том, что на имеющиеся ресурсы не "набрасываются" моментально, а только лишь через специальный процессор, доступный каждой рабочей станции.

Многопользовательский режим

Многопользовательские свойства системы содействуют одновременному использованию централизованных прикладных программных средств, ранее установленных и управляемых, например, если пользователь системы работает с другим заданием, то текущая выполняемая работа отодвигается на задний план.

Искусственные и реальные сети

По способу организации сети подразделяются на реальные и искусственные.

Искусственные сети (псевдосети) позволяют связывать компьютеры вместе через последовательные или параллельные порты и не нуждаются в дополнительных устройствах. Иногда связь в такой сети называют связью по нуль-модему (не используется модем). Само соединение называют нуль-модемным. Искусственные сети используются когда необходимо перекачать информацию с одного компьютера на другой. MS-DOS и windows снабжены специальными программами для реализации нуль-модемного соединения.

Основной недостаток - низкая скорость передачи данных и возможность соединения только двух компьютеров.

Реальные сети позволяют связывать компьютеры с помощью специальных устройств коммутации и физической среда передачи данных.

Основной недостаток - необходимость в дополнительных устройствах.

В дальнейшем употребляя термин компьютерная сеть будем иметь в ввиду реальные сети.

Все многообразие компьютерных сетей можно классифицировать по группе признаков:

  1. Территориальная распространенность;

  2. Ведомственная принадлежность;

  3. Скорость передачи информации;

  4. Тип среды передачи;

  5. Топология;

  6. Организация взаимодействия компьютеров.

Территориальная распространенность

По территориальной распространенности сети могут быть локальными, глобальными, и региональными.

Локальные - это сети, перекрывающие территорию не более 10 м2

Региональные - расположенные на территории города или области

Глобальные на территории государства или группы государств, например, всемирная сеть Internet.

В классификации сетей существует два основных термина: LAN и wAN.

LAN (Local Area Network) - локальные сети, имеющие замкнутую инфраструктуру до выхода на поставщиков услуг. Термин "LAN" может описывать и маленькую офисную сеть, и сеть уровня большого завода, занимающего несколько сотен гектаров. Зарубежные источники дают даже близкую оценку - около шести миль (10 км) в радиусе; использование высокоскоростных каналов.

wAN (wide Area Network) - глобальная сеть, покрывающая большие географические регионы, включающие в себя как локальные сети, так и прочие телекоммуникационные сети и устройства. Пример wAN - сети с коммутацией пакетов (Frame relay), через которую могут "разговаривать" между собой различные компьютерные сети.

Термин "корпоративная сеть" также используется в литературе для обозначения объединения нескольких сетей, каждая из которых может быть построена на различных технических, программных и информационных принципах.

Локальные сети являются сетями закрытого типа, доступ к ним разрешен только ограниченному кругу пользователей, для которых работа в такой сети непосредственно связана с их профессиональной деятельностью. Глобальные сети являются открытыми и ориентированы на обслуживание любых пользователей.

Ведомственная принадлежность

По принадлежности различают ведомственные и государственные сети.

Ведомственные принадлежат одной организации и располагаются на ее территории.

Государственные сети - сети, используемые в государственных структурах.

Скорость передачи информации

По скорости передачи информации компьютерные сети делятся на низко-, средне- и высокоскоростные.

  • низкоскоростные (до 10 Мбит/с),

  • среднескоростные (до 100 Мбит/с),

  • высокоскоростные (свыше 100 Мбит/с);

Для определения скорости передачи данных в сети широко используется бод.

Бод (Baud) – единица скорости передачи сигнала, измеряемая числом дискретных переходов или событий в секунду. Если каждое событие представляет собой один бит, бод эквивалентен бит/сек (в реальных коммуникациях это зачастую не выполняется).

Тип среды передачи информации

По типу среды передачи сети разделяются на:

проводные коаксиальные, на витой паре, оптоволоконные

беспроводные с передачей информации по радиоканалам, в инфракрасном диапазоне.

Топология компьютерных сетей

Введем определения.

Узел сети представляет собой компьютер, либо коммутирующее устройство сети.
Ветвь сети - это путь, соединяющий два смежных узла.

Узлы сети бывают трёх типов:

  • оконечный узел - расположен в конце только одной ветви;

  • промежуточный узел - расположен на концах более чем одной ветви;

  • смежный узел - такие узлы соединены по крайней мере одним путём, не содержащим никаких других узлов.

Способ соединения компьютеров в сеть называется её топологией.

Наиболее распространенные виды топологий сетей:

Линейная сеть

Требования к организации сети

Основными требованиями, которым должна удовлетворять организация ИВС, являются следующие:

  1. Открытость - возможность включения дополнительных абонентских, ассоциативных ЭВМ, а также линий (каналов) связи без изменения технических и программных средств существующих компонентов сети. Кроме того, любые две ЭВМ должны взаимодействовать между собой, несмотря на различие в конструкции, производительности, месте изготовления, функциональном назначении.

  2. Гибкость - сохранение работоспособности при изменении структуры в результате выхода из строя ЭВМ или линии связи.

  3. Эффективность - обеспечение требуемого качества обслуживания пользователей при минимальных затратах.

Модель OSI

Международной организацией стандартов утверждены определённые требования к организации взаимодействия между системами сети.
Эти требования получили название OSI (Open System Interconnection) - "эталонная модель взаимодействия открытых систем".

Согласно требованиям эталонной модели, каждая система сети должна осуществлять взаимодействие посредствам передачи кадра данных. Согласно модели OSI образование и передача кадра осуществляется с помощью 7-ми последовательных действий, получивших название "уровень обработки".

Основная идея этой модели заключается в том, что каждому уровню отводится конкретная ролью в том числе и транспортной среде. Благодаря этому общая задача передачи данных расчленяется на отдельные легко обозримые задачи.

Так как пользователи нуждаются в эффективном управлении, система вычислительной сети представляется как комплексное строение, которое координирует взаимодействие задач пользователей.

Отдельные уровни базовой модели проходят в направлении вниз от источника данных (от уровня 7 к уровню 1) и в направлении вверх от приемника данных (от уровня 1 к уровню 7). Пользовательские данные передаются в нижерасположенный уровень вместе со специфическим для уровня заголовком до тех пор, пока не будет достигнут последний уровень.

На приемной стороне поступающие данные анализируются и, по мере надобности, передаются далее в вышерасположенный уровень, пока информация не будет передана в пользовательский прикладной уровень.

Уровень 1. Физический.

На физическом уровне определяются электрические, механические, функциональные и процедурные параметры для физической связи в системах. Физическая связь и неразрывная с ней эксплуатационная готовность являются основной функцией 1-го уровня. Стандарты физического уровня включают рекомендации V.24 МККТТ (CCITT), EIA rS232 и Х.21. Стандарт ISDN ( Integrated Services Digital Network) в будущем сыграет определяющую роль для функций передачи данных. В качестве среды передачи данных используют трехжильный медный провод (экранированная витая пара), коаксиальный кабель, оптоволоконный проводник и радиорелейную линию.

Уровень 2. Канальный.

Канальный уровень формирует из данных, передаваемых 1-м уровнем, так называемые "кадры", последовательности кадров. На этом уровне осуществляются управление доступом к передающей среде, используемой несколькими ЭВМ, синхронизация, обнаружение и исправление ошибок.

Уровень 3. Сетевой.

Сетевой уровень устанавливает связь в вычислительной сети между двумя абонентами. Соединение происходит благодаря функциям маршрутизации, которые требуют наличия сетевого адреса в пакете. Сетевой уровень должен также обеспечивать обработку ошибок, мультиплексирование, управление потоками данных. Самый известный стандарт, относящийся к этому уровню, - рекомендация Х.25 МККТТ (для сетей общего пользования с коммутацией пакетов).

Уровень 4. Транспортный.

Транспортный уровень поддерживает непрерывную передачу данных между двумя взаимодействующими друг с другом пользовательскими процессами. Качество транспортировки, безошибочность передачи, независимость вычислительных сетей, сервис транспортировки из конца в конец, минимизация затрат и адресация связи гарантируют непрерывную и безошибочную передачу данных.

Уровень 5. Сеансовый.

Сеансовый уровень координирует прием, передачу и выдачу одного сеанса связи. Для координации необходимы контроль рабочих параметров, управление потоками данных промежуточных накопителей и диалоговый контроль, гарантирующий передачу, имеющихся в распоряжении данных. Кроме того, сеансовый уровень содержит дополнительно функции управления паролями, подсчета платы за пользование ресурсами сети, управления диалогом, синхронизации и отмены связи в сеансе передачи после сбоя вследствие ошибок в нижерасположенных уровнях.

Уровень 6. Представления данных.

Уровень представления данных предназначен для интерпретации данных; а также подготовки данных для пользовательского прикладного уровня. На этом уровне происходит преобразование данных из кадров, используемых для передачи данных в экранный формат или формат для печатающих устройств оконечной системы.

Уровень 7. Прикладной.

В прикладном уровне необходимо предоставить в распоряжение пользователей уже переработанную информацию. С этим может справиться системное и пользовательское прикладное программное обеспечение.

Компоненты компьютерной сети

Для организации компьютерной сети необходимо наличие:

  • Сетевого программного обеспечения

  • Физической среды передачи данных

  • Коммутирующих устройств.

Сетевое ПО

Сетевое программное обеспечение состоит из двух важнейших компонентов:

1) Сетевого программного обеспечения, устанавливаемого на компьютерах-клиентах.

2) Сетевого программного обеспечения, устанавливаемого на компьютерах-серверах.

Сетевая операционная система связывает все компьютеры и периферийные устройства в сети, координирует функции всех компьютеров и периферийных устройств в сети, обеспечивает защищённый доступ к данным и периферийным устройствам в сети.

Примеры сетевых ОС:

Netware 3.11, Nowell Inc.

LAN Server, IВМ Согр.

VINES 5.52, Banyan System Inc.

windows NT Advanced Server 4.0, windows 2k

Unix, Linux, FreeBSD

Физическая среда передачи данных

Определяет:

  1. Cкорость передачи данных в сети;

  2. 2) Размер сети

  3. 3) Требуемый набор служб (передача данных, речи, мультимедиа и т.д.), который необходимо организовать.

  4. 4) Требования к уровню шумов и помехозащищенности;

  5. 5) Общую стоимость проекта, включающая покупку оборудования, монтаж и последующую эксплуатацию.

  6. Кабельный сегмент сети - цепочка отрезков кабелей, электрически соединенных друг с другом.

  7. Логический сегмент сети, или просто сегмент - группа узлов сети, имеющих непосредственный доступ друг к другу на уровне пакетов канального уровня. В интеллектуальных хабах Ethernet группы портов могут объединяться в логические сегменты для изоляции их трафика от других сегментов в целях повышения производительности и защиты.

Коммутирующие устройства предназначены для связи сегментов сети.

Концентратор- хаб (Hub) - устройство физического подключения нескольких сегментов или лучей, обычно с возможностью соединения сетей различных архитектур.

Интеллектуальный хаб (Intelligent Hub) имеет специальные средства для диагностики и управления, что позволяет оперативно получать сведения об активности и исправности узлов, отключать неисправные узлы и т. д. Стоимость существенно выше, чем у обычных.

Активный хаб (Active Hub) усиливает сигналы, требует источника питания.

Peer Hub - хаб, исполненный в виде платы расширения PC, использующей только источник питания PC.

Пассивный хаб (Passive Hub) только согласует импедансы линий (в сетях ArCnet).

Standalone Hub - самостоятельное устройство с собственным источником питания (обычный вариант).

Повторитель (repeater) - устройство для соединения сегментов одной сети, обеспечивающее промежуточное усиление и формирования сигналов.Позволяет расширять сеть по расстоянию и количеству подключенных узлов.

Мост (Bridge) - средство передачи пакетов между сетями (локальными), для протоколов сетевого уровня прозрачен. Осуществляет фильтрацию пакетов, не выпуская из сети пакеты для адресатов, находящихся внутри сети, а также переадресацию - передачу пакетов в другую сеть в соответствии с таблицей маршрутизации или во все другие сети при отсутствии адресата в таблице. Таблица маршрутизации обычно составляется в процессе самообучения по адресу источника приходящего пакета.

Маршрутизатор (router) - средство обеспечения связи между узлами различных сетей, использует сетевые (логические) адреса. Сети могут находиться на значительном расстоянии, и путь, по которому передается пакет, может проходить через несколько маршрутизаторов. Сетевой адрес интерпретируется как иерархическое описание местоположения узла. Маршрутизаторы поддерживают протоколы сетевого уровня: IP, IPX, X.25, IDP. Мультипротокольные маршрутизаторы (более сложные и дорогие) поддерживают несколько протоколов одновременно для гетерогенных сетей. Brouter (Bridging router) - комбинация моста и маршрутизатора, оперирует как на сетевом, так и на канальном уровне.

Основные характеристики маршрутизатора:

  • тип: одно- или многопротокольный, LAN или wAN, Brouter;

  • поддерживаемые протоколы;

  • пропускная способность;

  • типы подключаемых сетей;

  • поддерживаемые интерфейсы (LAN и wAN);

  • количество портов;

  • возможность управления и мониторинга сети.

Шлюз (Gateway) - средство соединения существенно разнородных сетей. В отличие от повторителей, мостов и маршрутизаторов, прозрачных для пользователя, присутствие шлюза заметно. Шлюз выполняет преобразование форматов и размеров пакетов, преобразование протоколов, преобразование данных, мультиплексирование. Обычно реализуется на основе компьютера с большим объемом памяти.

Примеры шлюзов:

Fax: обеспечивает доступ к удаленному факсу, преобразуя данные в факс-формат;
E-mail: обеспечивает почтовую связь между локальными сетями. Шлюз обычно связывает MHS, специфичный для сетевой операционной системы с почтовым сервисом по X.400;

Internet: обеспечивает доступ к глобальной сети Internet.




Передача данных в сети

Для передачи информации по коммуникационным линиям данные преобразуются в цепочку следующих друг за другом битов (двоичное кодирование с помощью двух состояний:"0" и "1").

При передаче данных их разделяют на отдельные пакеты, передающиеся последовательно друг за другом.

Пакет включает в себя: адрес отправителя, адрес получателя, данные, контрольный бит.

Для правильной и, следовательно, полной и безошибочной передачи данных необходимо придерживаться согласованных и установленных правил. Все они оговорены в протоколе передачи данных.

Протокол передачи данных требует следующей информации:

  • Синхронизация - Под синхронизацией понимают механизм распознавания начала блока данных и его конца.

  • Инициализация - Под инициализацией понимают установление соединения между взаимодействующими партнерами.

  • Блокирование - Под блокированием понимают разбиение передаваемой информации на блоки данных строго определенной максимальной длины (включая опознавательные знаки начала блока и его конца).

  • Адресация - Адресация обеспечивает идентификацию различного используемого оборудования данных, которое обменивается друг с другом информацией во время взаимодействия.

  • Обнаружение ошибок - Под обнаружением ошибок понимают установку битов четности и, следовательно, вычисление контрольных битов.

  • Нумерация блоков - Текущая нумерация блоков позволяет установить ошибочно передаваемую или потерявшуюся информацию.

  • Управление потоком данных - Управление потоком данных служит для распределения и синхронизации информационных потоков. Так, например, если не хватает места в буфере устройства данных или данные не достаточно быстро обрабатываются в периферийных устройствах (например, принтерах), сообщения и / или запросы накапливаются.

  • Методы восстановления - После прерывания процесса передачи данных используют методы восстановления, чтобы вернуться к определенному положению для повторной передачи информации.

  • Разрешение доступа - Распределение, контроль и управление ограничениями доступа к данным вменяются в обязанность пункта разрешения доступа (например, "только передача" или "только прием".




Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!