СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Наночастицы в живой и неживой природе

Нажмите, чтобы узнать подробности

Просмотр содержимого документа
«Наночастицы в живой и неживой природе»

Раздел: Техника. Нанотехнологии и их приложение


Тема 1. «Наночастицы в живой и неживой природе: размеры, типы структуры, функциональная значимость».

Что такое «нано» и откуда всё началось

Нанонаука — это исследование явлений и объектов на атомарном, молекулярном и макромолекулярном уровнях, характеристики которых существенно отличаются от свойств их макроаналогов.

Нанотехнологии — это конструирование, характеристика, производство и применение структур, приборов и систем, свойства которых определяются их формой и размером на нанометровом уровне.

Таким образом, под термином «нанотехнология» понимается совокупность технологических приемов, позволяющая создавать нанообъекты и/или манипулировать ими. Остается только дать определение нанообъектам. Но вот это, оказывается, не так просто, поэтому бОльшая часть статьи посвящена именно этому определению.

Для начала приведем формальное определение, наиболее широко используемое в настоящее время:

Нанообъектами (наночастицами) называются объекты (частицы) с характерным размером в 1–100 нанометров хотя бы по одному измерению. Это приставка, которая показывает, что исходная величина должна быть уменьшена в миллиард раз, т. е. поделена на единицу с девятью нулями — 1 000 000 000. Например, 1 нанометр — это миллиардная часть метра (1 нм = 10–9 м). Чтобы представить себе, насколько мал 1 нм, выполним следующий мысленный эксперимент (рис. 1). Если мы уменьшим диаметр нашей планеты (12 750 км = 12,75 × 106 м ≈ 107 м) в 100 миллионов (108) раз, то получим примерно 10–1 м. Это размер, приблизительно равный диаметру футбольного мяча (стандартный диаметр футбольного мяча — 22 см, но в наших масштабах такая разница несущественна; для нас 2,2 × 10–1 м ≈ 10–1 м). Теперь уменьшим диаметр футбольного мяча в те же 100 миллионов (108) раз, и вот только теперь получим размер наночастицы, равный 1 нм .

В диапазоне размеров 1 нанометр -100 нанометров (1нм = 10-9 м - 100 нм = 10-7 м) возникает новый мир, в котором меняются физические и химические свойства любых вещества, и где сходятся предметы исследования физических, химических и биологических наук. Наномир - это часть пространства, в котором из атомов, путем самоорганизации формируется вещество, живое или неживое. Будущее наномира не только в том, что будет наноэлектроника или нанохимия или нанобиология. Важнейшим прикладным значением наносостояния является возможность конвергенции (схождения) неорганического, органического и биологического мира и создание невиданных ранее в природе новых веществ и существ. Основной вклад в получение и исследование наноматериалов внесли химики. За 70-80 лет химики синтезировали несколько сот различных нанообъектов - частиц, материалов, структур. Это кентавры, коацерваты, тактоиды, фазоиды, аллофены, гигантские кластеры, фуллерены, фуллероиды, нанотрубки и т.п. Физики получили графен.

Наночастицы (биологические, органические, металлорганические) являются некими индивидуальными образованиями, обладающими специфическим строением. Атомные ассоциаты, содержащие небольшое количество атомов, называют молекулами или кластерами (объединениями). В химии термин “кластер” употребляется для обозначения группы близко расположенных и тесно связанных друг с другом атомов, молекул, ионов, а иногда и ультрадисперсных частиц. Чем меньше частица и ниже температура, тем сильнее проявляются её квантовые свойства. Нанокластеры находясь на молекулярном уровне строения вещества в диапазоне 1 нм -100 нм, кардинально отличаются по свойствам от атомов и микрочастиц. Именно нанокластеры являются основными «элементами», из которых строятся различные нанообъекты живущие в наномире. Образуются размерные цепочки нанообъектов из наномира в микромир и далее в макромир: Изолированные одиночные нанокластеры  Наносистемы  Наноструктуры  Наноматериалы  Наноустройства  Нанотехнологии.

Нанокластер подобен молекуле. Он состоит из атомов на поверхности и атомов внутри кластера. В нанокластере с размером несколько нанометров большая часть атомов находится на его поверхности, для больших нанокластеров – более 10%. Изучение нанокластеров и наноструктур является предметом физической химии и включает способы получения нанокластеров, их свойства и применения в виде наноматериалов и технических наноустройств, используемых затем в различных нанотехнологиях.

Частицы классифицируются в зависимости от диаметра. Сверхтонкие частицы такие же, как наночастицы, так и между размерами 1 и 100 нм. Крупные частицы покрывают диапазон от 2500 и 10 000 нанометров. Мелкие частицы имеют размер от 100 и 2500 нм.

Классификация нанообъектов
Сплошные объекты классифицируют по размерности: 1) объемные трехмерные (3D) структуры, их называют нанокластерами (cluster – скопление, гроздь); 2) плоские двумерные (2D) объекты – нанопленки; 3) линейные одномерные (1D) структуры – нанонити, или нанопроволоки (nanowires); 4) нульмерные (0D) объекты – наноточки, или квантовые точки. К пористым структурам относят нанотрубки и нанопористые материалы, например аморфные силикаты.


Наноструктуры на примере углерода

Весь спектр сниженных размерностей можно легко объяснить и главное — экспериментально наблюдать на примере углеродных наночастиц.

Открытие наноструктур углерода явилось очень важной вехой в развитии концепции наночастиц.

Углерод — всего лишь одиннадцатый по распространенности в природе элемент, однако благодаря уникальной способности его атомов соединяться друг с другом и образовывать длинные молекулы, включающие в качестве заместителей и другие элементы, возникло громадное множество органических соединений, да и сама Жизнь. Но, даже соединяясь только сам с собой, углерод способен порождать большой набор различных структур с весьма разнообразными свойствами — так называемых аллотропных модификаций.8 Алмаз, например, является эталоном прозрачности и твердости, диэлектриком и теплоизолятором. Однако графит — идеальный «поглотитель» света, сверхмягкий материал (в определенном направлении), один из лучших проводников тепла и электричества (в плоскости, перпендикулярной вышеназванному направлению). А ведь оба этих материала состоят только из атомов углерода!

Но всё это на макроуровне. А переход на наноуровень открывает новые уникальные свойства углерода. Оказалось, что «любовь» атомов углерода друг к другу настолько велика, что они могут без участия других элементов образовывать целый набор наноструктур, отличающихся друг от друга, в том числе и размерностью. В их число входят фуллерены, графен, нанотрубки, наноконы и т. п. (рис. 5).

Отметим при этом, что наноструктуры углерода можно назвать «истинными» наночастицами, так как в них, как хорошо видно на рис. 5, все составляющие их атомы лежат на поверхности.



Рис. 5. Некоторые наноструктуры углерода: а — нанокон, б — нанохорн, в — нанотрубка, г — графен.


Но вернемся к самому графиту. Итак, графит — самая распространенная и термодинамически стабильная модификация элементарного углерода с трехмерной кристаллической структурой, состоящей из параллельных атомных слоев, каждый из которых представляет собой плотную упаковку шестиугольников (рис. 6). В вершинах любого такого шестиугольника расположен атом углерода, а стороны шестиугольников графически отражают прочные ковалентные связи9 между атомами углерода, длина которых составляет 0,142 нм. А вот расстояние между слоями достаточно велико (0,334 нм), и поэтому связь между слоями достаточно слабая (в этом случае говорят о ван-дер-ваальсовом взаимодействии10).


Рис. 6. Кристаллическая структура графита.

Такая кристаллическая структура и объясняет особенности физических свойств графита. Во-первых, низкую твердость и способность легко расслаиваться на мельчайшие чешуйки. Так, например, пишут грифели карандашей, графитовые чешуйки которых, отслаиваясь, остаются на бумаге. Во-вторых, уже упоминавшуюся ярко выраженную анизотропию физических свойств графита и прежде всего его электрической проводимости и теплопроводности.

Любой из слоев трехмерной структуры графита можно рассматривать как гигантскую плоскостную структуру, имеющую размерность 2D. Такая двумерная структура, построенная только из атомов углерода, получила название «графен». Получить такую структуру «относительно» легко, во всяком случае, в мысленном эксперименте. Возьмем графитовый карандашный грифель и начнем писать. Высота грифеля будет уменьшаться. Если хватит терпения, то в какой-то момент величина сравняется с d*и мы получим квантовую плоскость (2D).

Р ис. 7. Многостенные углеродные нанотрубки: а — схема многостенных углеродных нанотрубок; б — электронно-микроскопические изображения многостенных углеродных нанотрубок.

Долгое время проблема стабильности плоских двумерных структур в свободном состоянии (без подложки) в общем и графена в частности, а также электронные свойства графена были предметом только теоретических исследований. Совсем недавно, в 2004 г., группой физиков во главе с А. Геймом и К. Новосёловым были получены первые образцы графена, что произвело революцию в этой области, так как такие двумерные структуры оказались, в частности, способными проявлять поразительные электронные свойства, качественно отличающиеся от всех прежде наблюдаемых. Поэтому сегодня сотни экспериментальных групп и исследуют электронные свойства графена.

Если свернуть графеновый слой, моноатомный по толщине, в цилиндр таким образом, чтобы гексагональная сетка атомов углерода замкнулась без швов, то мы «сконструируем» одностенную углеродную нанотрубку. Экспериментально можно получать одностенные нанотрубки диаметром от 0,43 до 5 нм. Характерными особенностями геометрии нанотрубок являются рекордные значения удельной поверхности (в среднем ~1600 м2/г для одностенных трубок) и отношения длины к диаметру (100 000 и выше). Таким образом, нанотрубки представляют собой 1D нанообъект — квантовые нити.

Так вот, оказывается, что при определенных условиях кластеризации атомы углерода замыкаются с образованием каркасной сферической молекулы C60 размерностью 0D (т. е. квантовая точка), уже показанной на рис. 1.

Такое самопроизвольное образование молекулы C60 в углеродной плазме было обнаружено в совместном эксперименте Г. Крото, Р. Кёрла и Р. Смоли, проведенном в течение десяти дней в сентябре 1985 г.


Исторический факт

То, что теперь называют нанообъектами, нанотехнологиями, если угодно, человек давно использовал в своей жизни. Один из наиболее ярких примеров (в прямом и переносном смыслах) — это разноцветные стекла. Например, созданный еще IV веке н. э. кубок Ликурга, хранящийся в Британском музее, при освещении снаружи — зеленый, но если освещать его изнутри — то он пурпурно-красный. Как показали недавние исследования с помощью электронной микроскопии, этот необычный эффект обусловлен наличием в стекле наноразмерных частиц золота и серебра. Поэтому можно смело утверждать, что кубок Ликурга сделан из нанокомпозитного материала.

Как выясняется теперь, в Средние века металлическую нанопыль часто добавляли в стекло для изготовления витражей. Вариации окраски стекол зависят от различий добавляемых частиц — природы используемого металла и размера его частиц. Недавно было установлено, что эти стекла обладают еще и бактерицидными свойствами, т. е. не только дают красивую игру света в помещении, но и дезинфицируют среду.

Если рассматривать историю развития науки в историческом плане, то можно выделить, с одной стороны, общий вектор — проникновение естественных наук «вглубь» материи. Движение по этому вектору определяется развитием средств наблюдения. Сначала люди изучали обычный мир, для наблюдения которого не надо было особых приборов. При наблюдениях на этом уровне заложены основы биологии (классификация мира живого, К. Линней и др.), была создана теория эволюции (Ч. Дарвин, 1859 г.). Когда появился телескоп, люди смогли проводить астрономические наблюдения (Г. Галилей, 1609 г.). Результатом этого явились закон Всемирного тяготения и классическая механика (И. Ньютон, 1642–1727 гг.). Когда появился микроскоп Левенгука (1674 г.), люди проникли в микромир (размерный интервал 1 мм — 0,1 мм). Сначала это было только созерцание мелких, не видимых глазом организмов. Лишь в конце XIX века Л. Пастер первым выяснил природу и функции микроорганизмов. Примерно в это же время (конец XIX — начало XX века) происходила революция в физике. Ученые стали проникать внутрь атома, изучать его строение. Опять-таки это было связано с появлением новых методов и инструментов, в качестве которых стали применять мельчайшие частицы вещества. В 1909 г. используя альфа-частицы (ядра гелия, имеющие размер порядка 10–13 м) Резерфорду удалось «увидеть» ядро атома золота. Созданная на основе этих опытов планетарная модель атома Бора—Резерфорда дает наглядный образ огромности «свободного» места в атоме, вполне сравнимого с космической пустотой Солнечной системы. Именно пустоты таких порядков имел в виду Фейнман в своей лекции. При помощи тех же α-частиц в 1919 г. Резерфордом была осуществлена первая ядерная реакция по превращению азота в кислород. Так физики вошли в пико- и фемторазмерные интервалы1, и понимание строения материи на атомном и субатомном уровнях привело в первой половине прошлого века к созданию квантовой механики.


Нанообъекты органической природы — супермолекулярные структуры

Выше мы рассматривали только неорганические относительно однородные материалы, и уже там всё было не так просто. Но на Земле есть колоссальное количество материи, которую не просто трудно, а нельзя назвать однородной. Речь идет о биологических структурах и вообще о Живой материи.

В «Национальной нанотехнологической инициативе» в качестве одной из причин особого интереса к области наноразмеров указывается:

так как системная организация материи на наноуровне является ключевой особенностью биологических систем, нанонаука и технология дадут возможность включать в клетки искусственные компоненты и ансамбли, создавая тем самым новые структурно организованные материалы на основе подражания методам самосборки в природе.

Попробуем теперь разобраться, какой смысл имеет понятие «наноразмер» в приложении к биологии, памятуя о том, что при переходе к этому размерному интервалу должны принципиально или резко изменяться свойства. Но сначала вспомним, что к нанообласти можно подойти двумя путями: «сверху вниз» (дробление) или «снизу вверх» (синтез). Так вот, движение «снизу вверх» для биологии представляет собой не что иное, как образование из отдельных молекул биологически активных комплексов.

Рассмотрим коротко химические связи, которые определяют строение и форму молекулы. Первой и самой сильной является ковалентная связь, характеризующаяся строгой направленностью (только от одного атома к другому) и определенной длиной, которая зависит от типа связи (одинарная, двойная, тройная и т. п.). Именно ковалентные связи между атомами определяют «первичную структуру» любой молекулы, т. е. какие атомы и в каком порядке связаны друг с другом.

Но существуют и другие типы связей, определяющие то, что называется вторичной структурой молекулы, ее форму. Это прежде всего водородная связь — связь между полярным атомом и атомом водорода. Она ближе всего к ковалентной связи, так как также характеризуется определенной длиной и направленностью. Однако эта связь слабая, ее энергия на порядок ниже энергии ковалентной связи. Остальные типы взаимодействий являются ненаправленными и характеризуются не длиной образуемых связей, а скоростью убывания энергии связи с увеличением расстояния между взаимодействующими атомами (дальнодействием). Ионная связь является дальнодействующим взаимодействием, ван-дер-ваальсовы взаимодействия являются короткодействующими. Так, если расстояние между двумя частицами увеличивается в раз, то в случае ионной связи притяжение снизится до 1/r2 от начального значения, в случае уже не раз упоминавшегося ван-дер-ваальсового взаимодействия — до 1/r3 и более (до 1/r12). Все эти взаимодействия в общем случае можно определить как межмолекулярные взаимодействия.

Рассмотрим теперь такое понятие, как «биологически активная молекула». Следует признать, что молекула вещества сама по себе представляет интерес только для химиков и физиков. Их интересует ее строение («первичная структура»), ее форма («вторичная структура»), такие макроскопические показатели, как, например, агрегатное состояние, растворимость, температуры плавления и кипения и т. п., и микроскопические12 (электронные эффекты и взаимное влияние атомов в данной молекуле, спектральные свойства как проявление этих взаимодействий). Другими словами, речь идет об изучении свойств, проявляемых в принципе одной молекулой. Напомним, что по определению молекула — это наименьшая частица вещества, несущая его химические свойства.

С точки же зрения биологии «изолированная» молекула (в данном случае не важно, одна это молекула или какое-то количество одинаковых молекул) не способна проявлять никаких биологических свойств. Этот тезис звучит достаточно парадоксально, но попробуем его обосновать.

Рассмотрим это на примере ферментов — белковых молекул, представляющих собой биохимические катализаторы. Например, фермент гемоглобин, обеспечивающий перенос кислорода в ткани, состоит из четырех белковых молекул (субъединиц) и одной так называемой простетической группы — гемма, содержащего атом железа, нековалентно связанного с белковыми субъединицами гемоглобина.

Основной, а точнее определяющий вклад во взаимодействие белковых субъединиц и гемма, взаимодействие, приводящее к образованию и устойчивости надмолекулярного комплекса, который и называется гемоглобином, вносят силы, именуемые иногда гидрофобными взаимодействиями, но представляющие собой силы межмолекулярного взаимодействия. Связи, образуемые этими силами, значительно слабее ковалентных. Но при комплементарном взаимодействии, когда две поверхности очень близко подходят друг к другу, число этих слабых связей велико, и поэтому общая энергия взаимодействия молекул достаточно высока и образующийся комплекс достаточно устойчив. Но пока не образовались эти связи между четырьмя субъединицами, пока не присоединилась (опять-таки за счет нековалентных связей) простетическая группа (гемм), ни при каких условиях отдельные части гемоглобина связывать кислород не могут и тем более не могут никуда его переносить. И, следовательно, данной биологической активностью не обладают. (Эти же самые рассуждения можно распространить и на все ферменты в целом.)

При этом сам процесс катализа подразумевает образование в ходе реакции комплекса из как минимум двух компонентов — самого катализатора и молекулы (молекул), называемых субстратом(ами), претерпевающей(их) какие-то химические превращения под действием катализатора. Другими словами, должен образоваться комплекс как минимум из двух молекул, т. е. супрамолекулярный (надмолекулярный) комплекс.

Идея комплементарного взаимодействия впервые была предложена Э. Фишером для объяснения взаимодействия лекарственных веществ с их мишенью в организме и названа взаимодействием «ключ к замку». Хотя лекарственные (и иные биологические вещества) далеко не во всех случаях представляют собой ферменты, но и они способны вызвать какой-либо биологический эффект только после взаимодействия с соответствующей биологической мишенью. А такое взаимодействие опять-таки есть не что иное, как образование супрамолекулярного комплекса.

Следовательно, проявление «обычными» молекулами принципиально новых свойств (в рассматриваемом случае — биологической активности) связано с образованием ими надмолекулярных (супрамолекулярных) комплексов с другими молекулами за счет сил межмолекулярного взаимодействия. Именно так устроено большинство ферментов и систем в организме (рецепторы, мембраны и т. п.), в том числе такие сложные структуры, которые иногда называются биологическими «машинами» (рибосомы, АТФаза и др.). Причем происходит это именно на уровне нанометровых размеров — от одного до нескольких десятков нанометров.

При дальнейшем усложнении и увеличении размеров (более 100 нм), т. е. при переходе на другой размерный уровень (микроуровень), возникают значительно более сложные системы, способные не только к самостоятельному существованию и взаимодействию (в частности, к обмену энергией) с окружающей их средой, но и к самовоспроизведению. То есть опять происходит изменение свойств всей системы — она становится настолько сложной, что уже способна к самовоспроизведению, возникает то, что мы называем живыми структурами.

Многие мыслители неоднократно пытались дать определение Жизни. Не вдаваясь в философские дискуссии, отметим, что, на наш взгляд, жизнь есть существование самовоспроизводящихся структур, а начинаются живые структуры с отдельной клетки. Жизнь есть микро- и макроскопический феномен, а вот основные процессы, обеспечивающие функционирование живых систем, протекают на уровне наноразмеров.

Функционирование живой клетки как интегрированного саморегулирующегося устройства с ярко выраженной структурной иерархией обеспечивается миниатюризацией на наноразмерном уровне. Очевидно, что миниатюризация на уровне наноразмеров является принципиальным атрибутом биохимии, а следовательно, эволюция жизни состоит из появления и интеграции различных форм наноструктурированных объектов.13 Именно наноразмерный участок структурной иерархии, ограниченный по размерам как сверху, так и снизу (!), является критичным для появления и способности к существованию клеток. То есть именно уровень наноразмеров представляет собой переход от уровня молекулярного к уровню Живого.

Однако из-за того что миниатюризация на уровне наноразмеров является принципиальным атрибутом биохимии, нельзя всё-таки рассматривать любые биохимические манипуляции как нанотехнологические — нанотехнологии предполагают всё-таки конструирование, а не банальное применение молекул и частиц.

20



Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!