СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Математика. Ортоцентрические треугольники. Свойства и их доказательства.

Категория: Математика

Нажмите, чтобы узнать подробности

Ортотреуго́льник (ортоцентрический треугольник) — это треугольник ΔA1B1C1, вершины которого являются основаниями высот треугольника ∆ABC. Для ортотреуго́льника (для ортоцентрического треугольника) ΔA1B1C1 сам треугольник ∆ABC является треугольником трёх внешних биссектрис. То есть отрезки AB, BC и CA являются тремя внешними биссектрисами треугольника ΔA1B1C1.

 Исторические сведения

В начале 18 века итальянский инженер и математик Фаньяно дей Тоски поставил перед собой такую задачу: вписать в остроугольный треугольник АВС треугольник наименьшего периметра так, чтобы на каждой из сторон данного треугольника лежала одна вершина вписанного. Аналитическое решение этой задачи было опубликовано в 1755 году. Было доказано, что существует единственный треугольник наименьшего периметра KMN, его вершина K – основание высоты CK. Искомым треугольником всегда будет ортотреугольник KMN.

Свойства ортотреугольников

1.Теорема о подобии треугольников. Ортотреугольник отсекает треугольники, подобные данному.

Доказательство:

В остроугольном треугольнике проведены высоты , . Найдем углы треугольника , если , а .

Прямоугольные треугольники и имеют общий угол при вершине С, они подобны, поэтому .

Из этого равенства следует, что в треугольниках и стороны, прилежащие к общему углу при вершине С, пропорциональны. Следовательно, по второму признаку подобия треугольников подобен . В подобных треугольниках против соответственных сторон лежат равные углы, поэтому угол , .

Аналогично можно доказать подобие треугольников и ; и , если провести высоту CC1. При этом , и .

Как следствие данной теоремы, верно следующее утверждение:

Две смежные стороны ортотреугольника образуют равные углы с соответствующей стороной исходного треугольника.

Среди всех треугольников, вписанных в данный треугольник, только ортотреугольник обладает указанным свойством.

І. Ортоцентрический треугольник H1H2HВ остроугольном треугольнике ABC соединим отрезками основания высот H1,H2,H3 (рис. 1). Получим

треугольник H1H2H3. Рассмотрим некоторые свойства этого треугольника, которые используют при решении задач.

Свойство 1. Стороны ортоцентрического треугольника H1H2H3 антипараллельны сторонам треугольника ABC.

Доказательство. Обозначим точку H — точку пересечения высот треугольника ABC (ортоцентр). Опишем окружность около четырёхугольника AH2HH3. Тогда ∠AH2H= ∠AHH= ∠ABC, значит, сторона H2H3 антипараллельна стороне BC. Аналогично доказывается антипараллельность двух других сторон треугольника

H1H2H3.

Свойство 2. Высоты треугольника ABC являются биссектрисами внутренних углов треугольника H1H2H3.

Доказательство. Действительно, поскольку ∠H3H1B = ∠H2H1C = ∠A, то ∠H3H1A= ∠AH1H2.

Свойство 3. Отрезок OA перпендикулярен отрезку H2H3.

Доказательство. Действительно, если описать окружность около треугольника H1H2H3, дуги, на которые опираются углы ∠H2H1A и ∠AH1H3, равны, а значит, OA⊥H2H3 (рис. 2).

Свойство 4. Вершины треугольника ABC являются центрами вневписанных окружностей ортоцентрического треугольника H1H2H3 (рис. 3).

Доказательство. Поскольку отрезок AH2 перпендикулярен биссектрисе H2B, а AH3⊥CH3, то пересечение отрезков AH2 и AH3, - точка A есть центр вневписанной окружности, касающейся стороны H2H3.

Свойство 5. Имеет место формула p= hasinA, где pH — полупериметр треугольника H1H2H3, ha — высота AH1.

Доказательство. Из точки A опустим перпендикуляр AF на прямую H1H(рис.3). Поскольку∠H1AF = ∠H3H1B (углы с взаимно перпендикулярными сторонами), то ∠HAF = ∠A и H1F = hasinA (из треугольника H A1 F), или p= hasinA.

Свойство 6. Имеет место формула S = RpH, где S — площадь треугольника ABC, R — радиус окружности, описанной около треугольника ABC.

Доказательство. Действительно, поскольку p= hasinA, то

pH= sinA, и S = RpH(a — длина стороны BC).

Свойство 7. Окружность Леонарда Эйлера.

Доказательство. Опишем окружность около треугольника H1H2H3. Докажем, что окружности (обозначим её γe), кроме точек H1, H2, H3, принадлежат середины отрезков AH, BH, CH (их называют точками Эйлера и обозначают E1, E2, E3), ещё три точки M1, M2, M3 — середины сторон BC, AC, AB. Начнём с точек Эйлера. Заметим, что доказательство нестандартно (рис. 4).

Поскольку прямая H H1 (рис. 4) принадлежит биссектрисе угла ∠H2H1H3, то точка её пересечения с окружностью γe, описанной

около треугольника H1H2H3, будет серединой дуги H2H3, то есть точкой W1 треугольника H1H2H3, а точка A — центром вневписанной окружности (свойство 4).

По теореме Мансиона ( IW1 = W1Ia = W1B = W1C): AE1 = E1H. Значит, точка совпадает с серединой отрезка IW1 для треугольника H1H2H3 с точкой E1. Поскольку точки B и C также центры вневписанных окружностей, то утверждение относительно середин отрезков AH, BH и CH доказано. Докажем, что середины AC, BC и AB (точки M1, M2, M3) принадлежат окружности γe.

Воспользуемся свойством вневписанных окружностей с центрами Ib и Ic. Пусть W1A— точка, диаметрально противоположная точке W1. Тогда W1A— середина отрезка IbIc. Пусть окружность γe пересекает сторону BC в точке X (рис. 4). Поскольку ∠E1H1X1 = 90°, то точки X и E1 диаметрально противоположны, а поскольку точка E1 есть точкой W1окружности, то точка X совпадает с серединой отрезка BC (точки B и C — центры вневписанных окружностей). Теорема об окружности Эйлера для треугольника ABC доказана новым способом.


Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!