СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Уроки физики 2 семестр

Категория: Физика

Нажмите, чтобы узнать подробности

Материал, вопросы для повторения и задачи для подготовки по физики во втором семестре.

Просмотр содержимого документа
«1 Электромагнитное поле»

Урок №2/2

Тема №1: « Понятие об электромагнитном поле. Электрический заряд. Закон сохранения электрического заряда. Взаимодействие зарядов. Закон Кулона.»

I Предварительный устный опрос.

- Назовите 4 основных фундаментальных взаимодействия.

- Какое взаимодействие называется электромагнитным?

- Какие силы в механике относятся к электромагнитным?

- Чем объясняется возможность взаимодействия заряженных тел на расстоянии?

- Что такое электромагнитное поле?

- Чем отличаются заряженные тела от незаряженных?

II Объяснение новой темы.

1 Понятие об электромагнитном поле.

В 60-х годах XIX в. Джеймс Клерк Максвелл разработал теорию электромагнитного поля, согласно которой переменное электрическое поле порождает переменное магнитное поле. Эти поля имеют вихревой характер: силовые линии порождающего поля концентрически охвачены силовыми линиями порождаемого поля. В результате образуется система «переплетённых» между собой электрических и магнитных полей.

Магнитное поле всегда возникает вокруг проводников, по которым текут токи. Силовые линии магнитного поля всегда замкнуты, откуда следует, что электрические токи, порождающие магнитное поле, тоже должны быть замкнуты.

Таким образом,

электрическое и магнитное поля взаимосвязаны: изменение одного из них порождает другое. Эти поля – проявление единого электромагнитного поля.

Электромагнитное поле – особая форма материи. Оно существует реально, т.е. независимо от нас, от наших знаний о нём.

Любой заряд, независимо от наличия других зарядов, всегда имеет электрическое поле. Если заряд неподвижен, электрическое поле называется электростатическим.

Электростатическое поле не меняется во времени и создаётся только электрическими зарядами.

2 Электрический заряд

Способность частиц или тел к электромагнитному взаимодействию характеризует электрический заряд.

Электрический заряд – физическая величина, определяющая силу электромагнитного взаимодействия.

Единица измерения электрического заряда – Кулон (Кл).

Существует два вида электрических зарядов – положительные и отрицательные.

Выбор названия этих зарядов был исторической случайностью. Заряд, который назвали положительным, с тем же успехом можно было назвать и отрицательным. Носителями зарядов могут быть элементарные частицы, атомы, молекулы, макроскопические тела.

Экспериментально было установлено, что существует минимальная величина электрического заряда, одинаковая по модулю для положительных и отрицательных зарядов. Отделить часть этого заряда невозможно. Наименьший электрический заряд имеют элементарные частицы: протон обладает наименьшим положительным зарядом (+е), электрон – минимальным отрицательным зарядом (-е).

Результирующая величина заряда атома или молекулы складывается из заряда протонов и электронов, входящих в их состав:

Q = ne,

где n – целое число, е – 1,6∙10-19 Кл.

Суммарный заряд пропорционален величине минимального заряда.

Электрический заряд дискретен (квантован).

Минимальное различие величин любых зарядов равно е.

Согласно современной квантовой теории протон и нейтрон являются комбинацией других элементарных частиц – кварков u и d c зарядом +е

и - е соответственно.

Кварки, как независимые частицы, в экспериментах не наблюдались. Однако даже если будет обнаружен заряд, в 3 раза меньший заряда электрона, то и это не нарушит квантование заряда: изменится лишь величина минимального заряда.

3 Закон сохранения электрического заряда

В результате взаимного трения электронейтральных тел, образующих электрически изолированную систему, заряды перераспределяются между телами.

Электрически изолированная система тел – система тел, через границу которой не проникают заряды.

Уменьшение числа электронов в одном теле равно увеличению их числа в другом. Полный заряд такой системы не изменяется, оставаясь равным нулю.

Закон сохранения заряда: Алгебраическая сумма зарядов электрически изолированной системы постоянна:

Q1 + Q2 + … + Qn = const (1)

где n – число зарядов в системе.

Закон сохранения заряда выполняется и в том случае, если электрически изолированную систему образуют заряженные тела. В соответствии с законом сохранения заряда разноимённые заряды рождаются или исчезают попарно: сколько родилось (исчезло) положительных зарядов, столько родилось (исчезло) и отрицательных.

Закон сохранения заряда справедлив в любой инерциальной системе отсчёта. Это означает, что наблюдатели, находящиеся в различных инерциальных системах отсчёта, измеряя один и тот же заряд, получают одно и то же значение его величины.

4 Взаимодействие зарядов. Закон Кулона.

Первые количественные результаты по измерению силы взаимодействия зарядов были получены в 1785 г. французским учёным Шарлем Огюстеном Кулоном.

Кулон для измерения этой силы использовал крутильные весы. Их основным элементом был лёгкий изолирующий стержень (коромысло), подвешенный за его середину на серебряной упругой нити.

Маленькая тонкая незаряженная золотая сфера на одном конце коромысла уравновешивалась бумажным диском на другом конце. Поворотом коромысла она приводилась в контакт такой же неподвижной заряженной сферой, в результате чего её заряд делился поровну между сферами.

Диаметр сфер выбирался много меньше, чем расстояние между сферами, чтобы исключить влияние размеров и формы заряда на результаты измерений.

2

Рисунок .1. Прибор Кулона.




Точечный заряд – заряженное тело, размер которого много меньше расстояния его возможного действия на другие тела.

Сферы, имеющие одноимённые заряды, начинали отталкиваться , закручивая упругую нить. Максимальный угол α поворота коромысла, фиксируемый по наружной шкале, был пропорционален силе, действующей на сферу.

Кулон определил силу взаимодействия заряженных сфер по углу поворота коромысла.

Разряжая сферу после измерения силы и соединяя её вновь с неподвижной сферой, Кулон уменьшал заряд на взаимодействующих сферах в 2, 4, 8,…раз.

Установка позволяла также изменять расстояние между заряженными сферами поворотом коромысла с помощью градуированной шкалы.

Закон Кулона: Сила взаимодействия между двумя неподвижными точечными зарядами, находящимися в вакууме, прямо пропорциональна произведению модулей зарядов, обратно пропорциональна квадрату расстояния между ними и направлена по прямой, соединяющей заряды:

F12 = kq1q2/r2 (2)

где q1, q2 – величина зарядов, r – расстояние между зарядами, k – коэффициент пропорциональности, зависящий от выбора системы единиц.

В СИ единица заряда является не основной, а производной. Кулон определяют с помощью Ампера (основной единицы силы тока вСИ).

Кулон – электрический заряд, проходящий через поперечное сечение проводника при силе тока 1А за 1 с.

k = 9∙109 Н∙м2/Кл2

Часто его записывают в виде:

k = 1/4πε0,

где ε0 = 8,85∙10-12 Кл2/(Н∙м2) – электрическая постоянная.

Согласно закону Кулона два точечных заряда по 1 Кл, расположенных в вакууме на расстоянии 1 м друг от друга, взаимодействуют с силой

F = 9∙109 Н,

примерно равной весу египетских пирамид.

Из этой оценки ясно, что Кулон – очень большая единица заряда. На практике поэтому обычно пользуются дольными единицами Кулона:

1 мкКл = 10-6 Кл,

1 мКл = 10-3 Кл.



III Задачи на закрепление темы

1 Определите силу взаимодействия двух одинаковых точечных зарядов по 1 мкКл, находящихся на расстоянии 30 см друг от друга.

2 Сила взаимодействия двух одинаковых точечных зарядов, находящихся на расстоянии 0,5 м, равна 3,6 Н. Найдите величины этих зарядов.

3 Два одинаковых шарика массой 44,1 г подвешены на нитях длиной 0,5 м. При сообщении шарикам одинаковых избыточных зарядов они оттолкнулись друг от друга так, что угол между нитями стал равным 900. Найдите величины избыточных зарядов на шариках.


Просмотр содержимого документа
«10 лаб.раб.»

Цель работы: Знакомство с одним из методов по определению коэффициента преломления стекла.

Оборудование: Стеклянная пластинка, 4 булавки.

Порядок выполнения работы.

  1. Расположить пластинку на середине листа и обвести её карандашом.

  2. Воткнуть булавку в лист в точке А.

  3. Расположить глаз на уровне листа так, чтобы угол зрения с перпендикуляром, проведенным к грани пластины составлял примерно 30 градусов.

  4. По другую сторону пластины в точке B воткнуть вторую булавку. Основания булавок должны находиться на одной прямой.

  5. В точках C и D воткнуть еще две булавки. Основания всех четырех булавок должны лежать на одной прямой.

  6. Через полученные точки A, B, C, D проводим прямые линии.

  1. От точки А на перпендикуляре по обе стороны отложить равные отрезки

АМ и АР.

  1. Из точек М и Р на лучи АС и АВ опустить перпендикуляры.

  2. Из треугольников AMN и APQ находим:

  1. Определить скорость света в стекле, если скорость света в воздухе 3108 м/с.

  2. Вывод:

Просмотр содержимого документа
«13 Ток в металлах »

Урок №2/26

Тема №13: «Электрическая проводимость металлов. Скорость упорядоченного движения электронов в проводнике. Термоэлектрические явления. Термоэлектродвижущая сила. Термопары, термоэлементы, термобатареи и их применение.»

I Самостоятельная работа (см.урок №8 - 2 вариант).

II Объяснение новой темы.

1 Электрическая проводимость металлов.

Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику переноса вещества не происходит, следовательно, ионы металла не принимают участия в переносе электрического заряда.

Наиболее убедительное доказательство электронной природы тока в металлах было получено в опытах с инерцией электронов. Идея таких опытов и первые качественные результаты (1913 г.) принадлежат русским физикам Л. И. Мандельштаму и Н. Д. Папалекси. В 1916 году американский физик Р. Толмен и шотландский физик Б. Стюарт усовершенствовали методику этих опытов и выполнили количественные измерения, неопровержимо доказавшие, что ток в металлических проводниках обусловлен движением электронов.

Схема опыта Толмена и Стюарта показана на рис. 1.12.1. Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру Г. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра.

На основании результатов опытов Толмена и Стюарта было установлено, что носители свободного заряда в металлах имеют отрицательный знак, а отношение заряда носителя к его массе близко к удельному заряду электрона, полученному из других опытов. Так было установлено, что носителями свободных зарядов в металлах являются электроны.

Хорошая электропроводность металлов объясняется высокой концентрацией свободных электронов, равной по порядку величины числу атомов в единице объема.



Рисунок 1.12.1.

Схема опыта Толмена и Стюарта


Предположение о том, что за электрический ток в металлах ответственны электроны, возникло значительно раньше опытов Толмена и Стюарта. Еще в 1900 году немецкий ученый П. Друде на основании гипотезы о существовании свободных электронов в металлах создал электронную теорию проводимости металлов. Эта теория получила развитие в работах голландского физика Х. Лоренца и носит название классической электронной теории. Согласно этой теории, электроны в металлах ведут себя как электронный газ, во многом похожий на идеальный газ. Электронный газ заполняет пространство между ионами, образующими кристаллическую решетку металла (рис. 1.12.2).

Из-за взаимодействия с ионами электроны могут покинуть металл, лишь преодолев так называемый потенциальный барьер. Высота этого барьера называется работой выхода. При обычных (комнатных) температурах у электронов не хватает энергии для преодоления потенциального барьера.

Из-за взаимодействия с кристаллической решеткой потенциальная энергия выхода электрона внутри проводника оказывается меньше, чем при удалении электрона из проводника. Электроны в проводнике находятся в своеобразной «потенциальной яме», глубина которой и называется потенциальным барьером.



Рисунок 1.12.2.

Газ свободных электронов в кристаллической решетке металла. Показана траектория одного из электронов



2 Скорость упорядоченного движения электронов в проводнике.

Как ионы, образующие решетку, так и электроны участвуют в тепловом движении. Ионы совершают тепловые колебания вблизи положений равновесия – узлов кристаллической решетки. Свободные электроны движутся хаотично и при своем движении сталкиваются с ионами решетки. В результате таких столкновений устанавливается термодинамическое равновесие между электронным газом и решеткой. Согласно теории Друде–Лоренца, электроны обладают такой же средней энергией теплового движения, как и молекулы одноатомного идеального газа. Это позволяет оценить среднюю скорость vт теплового движения электронов по формулам молекулярно-кинетической теории. При комнатной температуре она оказывается примерно равной 105 м/с.

При наложении внешнего электрического поля в металлическом проводнике кроме теплового движения электронов возникает их упорядоченное движение (дрейф), то есть электрический ток. Среднюю скорость vд дрейфа можно оценить, используя формулу (27) – тема №6:

I = envдS = vд = I / enS





Концентрация n атомов в металлах находится в пределах 1028–1029 м–3.

Оценка по этой формуле для металлического проводника сечением 1 мм2, по которому течет ток 10 А, дает для средней скорости vд упорядоченного движения электронов значение в пределах 0,6–6 мм/c. Таким образом, средняя скорость упорядоченного движения электронов в металлических проводниках на много порядков меньше средней скорости их теплового движения.

Рис. 1.12.3 дает представление о характере движения свободного электрона в кристаллической решетке.

Рисунок 1.12.3.

Движение свободного электрона в кристаллической решетке: а – хаотическое движение электрона в кристаллической решетке металла; b – хаотическое движение с дрейфом, обусловленным электрическим полем.

Малая скорость дрейфа не противоречит опытному факту, что ток во всей цепи постоянного тока устанавливается практически мгновенно. Замыкание цепи вызывает распространение электрического поля со скоростью c = 3·108 м/с. Через время порядка l / c (l – длина цепи) вдоль цепи устанавливается стационарное распределение электрического поля и в ней начинается упорядоченное движение электронов.

В классической электронной теории металлов предполагается, что движение электронов подчиняется законам механики Ньютона. В этой теории пренебрегают взаимодействием электронов между собой, а их взаимодействие с положительными ионами сводят только к соударениям. Предполагается также, что при каждом соударении электрон передает решетке всю накопленную в электрическом поле энергию и поэтому после соударения он начинает движение с нулевой дрейфовой скоростью.

Несмотря на то, что все эти допущения являются весьма приближенными, классическая электронная теория качественно объясняет законы электрического тока в металлических проводниках.








3 Термоэлектрические явления. Термоэлектродвижущая сила. Термопары, термоэлементы, термобатареи и их применение.

1) Явление Зеебека (1821). Немецкий физик Т. Зеебек (1770—1831) обнаружил, что в замкнутой цепи, состоящей из последовательно соединенных разнородных провод­ников, контакты между которыми имеют различную температуру, возникает элект­рический ток.

Рассмотрим замкнутую цепь, состоящую из двух металлических проводников 1 и 2 с температурами спаев Т1 (контакт А) и Т2 (контакт В), причем Т1 T2 (рис. 331).

Не вдаваясь в подробности, отметим, что в замкнутой цепи для многих пар металлов (например, СuBi, Ag—Сu, Аu—Сu) электродвижущая сила прямо пропор­циональна разности температур в контактах:

Ɛт = α (Т1 – Т2)

Эта э.д.с. называется термоэлектродвижущей силой. Направление тока при Т1Т2 на рис. 331 показано стрелкой. Термоэлектродвижущая сила, например для пары метал­лов медь — константан, для разности температур 100 К составляет всего 4,25 мВ.

Явление Зеебека используется для измерения температуры. Для этого применяются термоэлементы, или термопары — датчики температур, состоящие из двух соединенных между собой разнородных металлических проводников. Если контакты (обычно спаи) проводников (проволок), образующих термопару, находятся при разных температурах, то в цепи возникает термоэлектродвижущая сила, которая зависит от разности температур контактов и природы применяемых материалов. Чувствительность термопар выше, если их соединять последовательно. Эти соединения называются термобатареями (или термостолбиками). Термопары применяются как для измерения ничтожно малых разностей температур, так и для измерения очень высоких и очень низких температур (например, внутри доменных печей или жидких газов). Точность определения тем­пературы с помощью термопар составляет, как правило, несколько кельвин, а у некоторых термопар достигает 0,01 К. Термопары обладают рядом преимуществ перед обычными термометрами: имеют большую чувствительность и малую инерционность, позволяют проводить измерения в широком интервале температур и допускают дистанционные измерения.

Явление Зеебека в принципе может быть использовано для генерации электрического тока. Так, уже сейчас к.п.д. полупроводниковых термобатарей достигает 18%. Следовательно, совершенствуя полупроводниковые термоэлектрогенераторы, можно добиться эффективного прямого преобразования солнечной энергии в электрическую.

2) Явление Пельтье (1834). Французский физик Ж. Пельтье (1785—1845) обнару­жил, что при прохождении через контакт двух различных проводников электрического тока в зависимости от его направления помимо джоулевой теплоты выделяется или поглощается дополнительная теплота. Таким образом, явление Пельтье является обратным по отношению к явлению Зеебека. В отличие от джоулевой теплоты, которая пропорциональна квадрату силы тока, теплота Пельтье пропорциональна первой степени силы тока и меняет знак при изменении направления тока.

Рассмотрим замкнутую цепь, состоящую из двух разнородных металлических проводников 1 и 2 (рис. 332), по которым пропускается ток I ' (его направление в данном случае выбрано совпадающим с направлением термотока (на рис. 331 при условии T1T2)). Согласно наблюдениям Пельтье, спай А, который при явлении Зеебека поддерживался бы при более высокой температуре, будет теперь охлаждаться, а спай В — нагреваться. При изменении направления тока I ' спай А будет нагреваться, спай В — охлаждаться.

Объяснить явление Пельтье можно следующим образом. Электроны по разную сторону спая обладают различной средней энергией (полной—кинетической плюс потенциальной). Если электроны (направление их движения задано на рис. 332 пунктир­ными стрелками) пройдут через спай В и попадут в область с меньшей энергией, то избыток своей энергии они отдадут кристаллической решетке и спай будет нагреваться. В спае А электроны переходят в область с большей энергией, забирая теперь недостающую энергию у кристаллической решетки, и спай будет охлаждаться.

Явление Пельтье используется в термоэлектрических полупроводниковых холодильниках, созданных впервые в 1954 г. под руководством А. Ф. Иоффе, и в некото­рых электронных приборах.

4 Вопросы на закрепление изученной темы.

- Какие частицы являются носителями тока в металлах?

- Опишите опыт Мандельштама и Папалекси.

- Что такое электронный газ?

- Что такое потенциальный барьер?

- Какие 2 скорости присутствуют в движении электронов?

- Какая из этих скоростей больше?

- От каких величин зависит дрейфовая скорость электронов?

- В чём заключаются явления Зеебека и Пельтье?

- Где применяются эти явления?



.

   








Просмотр содержимого документа
«14 ток в газах и вакууме »

Урок №2/28

Тема №14: «Электропроводность газов. Несамостоятельный и самостоятельный разряды в газах. Электрический ток в вакууме, термоэлектронная эмиссия. Вакуумные диоды и триоды.»

I Устный фронтальный опрос.

- Какие частицы являются носителями тока в металлах?

- Опишите опыт Мандельштама и Папалекси.

- Что такое электронный газ?

- Что такое потенциальный барьер?

- Какие 2 скорости присутствуют в движении электронов?

- Какая из этих скоростей больше?

- От каких величин зависит дрейфовая скорость электронов?

- В чём заключаются явления Зеебека и Пельтье?

- Где применяются эти явления?

II Объяснение новой темы.

1 Электропроводность газов. Несамостоятельный и самостоятельный разряды в газах.


В обычных условиях газ - это диэлектрик, т.е. состоит из нейтральных атомов и молекул и не содержит свободных носителей эл.тока.
Газ-проводник - это ионизированный газ. Ионизированный газ обладает электронно-ионной проводимостью.

Воздух является диэлектриком в линиях электропередач, в воздушных конденсаторах, в контактных выключателях. Воздух является проводником при возникновении молнии, электрической искры, при возникновении сварочной дуги.


Ионизация - это распад нейтральных атомов или молекул на положительные ионы и электроны путем отрыва электронов от атомов. Ионизация происходит при нагревании газа или воздействия излучений (УФ, рентген, радиоактивное) и объясняется распадом атомов и молекул при столкновениях на высоких скоростях. Газовый разряд- это эл.ток в ионизированных газах.
Носителями зарядов являются положительные ионы и электроны. Газовый разряд наблюдается в газоразрядных трубках (лампах) при воздействии электрического или магнитного поля.

Газ перестает быть проводником, если ионизация прекращается, это происходит в следствие рекомбинации ( воссоединения противоположно заряженных частиц). Существует самостоятельный и несамостоятельный газовый разряд.

Несамостоятельный газовый разряд- разряд, который не может продолжаться без действия внешнего ионизатора. Когда разряд достигает насыщения - график становится горизонтальным. Здесь электропроводность газа вызвана лишь действием ионизатора.

Самостоятельный газовый разряд продолжается и после прекращения действия внешнего ионизатора за счет ионов и электронов, возникших в результате ударной ионизации ( = ионизации эл. удара); возникает при увеличении разности потенциалов между электродами ( возникает электронная лавина).
Несамостоятельный газовый разряд может переходить в самостоятельный газовый разряд при Ua = Uзажигания.

Электрический пробой газа - процесс перехода несамостоятельного газового разряда в самостоятельный.

Самостоятельный газовый разряд бывает 4-х типов:

1. Тлеющий - при низких давлениях(до нескольких мм рт.ст.) -наблюдается в газосветных трубках и газовых лазерах.
2. Искровой - при нормальном давлении и высокой напряженности электрического поля (молния - сила тока до сотен тысяч ампер).
3. Коронный - при нормальном давлении в неоднородном электрическом поле ( на острие ).
4. Дуговой - большая плотность тока, малое напряжение между электродами ( температура газа в канале дуги -5000-6000 градусов Цельсия); наблюдается в прожекторах, проекционной киноаппаратуре.

Эти разряды наблюдаются: тлеющий - в лампах дневного света;
искровой - в молниях; коронный - в электрофильтрах, при утечке энергии;
дуговой - при сварке, в ртутных лампах.
Плазма- это четвертое агрегатное состояние вещества с высокой степенью ионизации за счет столкновения молекул на большой скорости при высокой температуре; встречается в природе: ионосфера - слабо ионизированная плазма, Солнце - полностью ионизированная плазма; искусственная плазма - в газоразрядных лампах.

Плазма бывает: низкотемпературная - при температурах меньше 100 000К;
высокотемпературная - при температурах больше 100 000К.

Основные свойства плазмы:
- высокая электропроводность
- сильное взаимодействие с внешними электрическими и магнитными полями.

При температуре 20000 – 30000 К любое вещество находится в состоянии плазмы.

Интересно, что 99% вещества во Вселенной - плазма.

2 Электрический ток в вакууме. Термоэлектронная эмиссия.


Вакуум - это такая степень разрежения газа, при которой соударений молекул практически нет.



- электрический ток невозможен, т.к. возможное количество ионизированных молекул не может обеспечить электропроводность;
- создать эл.ток в вакууме можно, если использовать источник заряженных частиц;
- действие источника заряженных частиц может быть основано на явлении термоэлектронной эмиссии.


Термоэлектронная эмиссия

- это испускание электронов твердыми или жидкими телами при их нагревании до температур, соответствующих видимому свечению раскаленного металла.
Нагретый металлический электрод непрерывно испускает электроны, образуя вокруг себя электронное облако.
В равновесном состоянии число электронов, покинувших электрод, равно числу электронов, возвратившихся на него ( т.к. электрод при потере электронов заряжается положительно).
Чем выше температура металла, тем выше плотность электронного облака.



3 Вакуумный диод и триод. Электронно-лучевая трубка.

Диод. Термоэлектронная эмиссия используется в различных электронных приборах. Простейший из них — электровакуумный диод. Этот прибор состоит из стеклянного баллона, в котором находятся два электрода: катод и анод. Анод изготовлен из металлической пластины, катод — из тонкой металлической проволоки, свернутой в спираль. Концы спирали укреплены на металлических стержнях, имеющих два вывода для подключения в электрическую цепь. Соединив выводы катода с источником тока, можно вызвать нагревание проволочной спирали катода проходящим током до высокой температуры. Проволочную спираль, нагреваемую электрическим током, называют нитью накала лампы. Условное обозначение вакуумного диода показано на рисунке 170.

Применение диода. Включив вакуумный диод в электрическую цепь последовательно с источником постоянного тока и амперметром, можно обнаружить основное свойство диода, используемое в различных радиоэлектронных приборах,— одностороннюю проводимость. При подключении источника тока положительным полюсом к аноду и отрицательным к катоду электроны, испускаемые нагретым катодом, движутся под действием электрического поля к аноду — в цепи течет электрический ток. Если подключить источник тока положительным полюсом к катоду, а отрицательным — к аноду, то электрическое поле будет препятствовать движению электронов от катода к аноду — электрического тока в цепи нет. Свойство односторонней проводимости диода используется в радиоэлектронных приборах для преобразования переменного тока в постоянный.

Вольтамперная характеристика вакуумного диода.



При малых напряжениях на аноде не все электроны, испускаемые катодом, достигают анода, и электрический ток небольшой. При больших напряжениях ток достигает насыщения, т.е. максимального значения.
Вакуумный диод используется для выпрямления переменного тока.


Триод. Потоком электронов, движущихся в электронной лампе от катода к аноду, можно управлять с помощью электрических и магнитных полей. Простейшим электровакуумным прибором, в котором осуществляется управление потоком электронов с помощью электрического поля, является триод. Баллон, анод и катод вакуумного триода имеют такую же конструкцию, как и у диода, однако на пути электронов от катода к аноду в триоде располагается третий электрод, называемый сеткой. Обычно сетка — это спираль из нескольких витков тонкой проволоки вокруг катода.
Если на сетку подается положительный потенциал относительно катода (рис. 171), то значительная часть электронов пролетает от катода к аноду, и в цепи анода существует электрический ток. При подаче на сетку отрицательного потенциала относительно катода электрическое поле между сеткой и катодом препятствует движению электронов от катода к аноду (рис. 172), анодный ток убывает. Таким образом, изменяя напряжение между сеткой и катодом, можно регулировать силу тока в цепи анода.

Устройство вакуумного триода показано на рисунке 173, его условное обозначение на схемах — на рисунке 174.

Электронные пучки и их свойства. Электроны, испускаемые нагретым катодом, можно с помощью электрических полей разгонять до высоких скоростей. Пучки электронов, движущихся с большими скоростями, можно использовать для получения рентгеновских лучей, плавки и резки металлов. Способность электронных пучков испытывать отклонения под действием электрических и магнитных полей и вызывать свечение кристаллов используется в электронно-лучевых трубках.

Электронно-лучевая трубка. Если в аноде 2 вакуумного диода сделать отверстие, то часть электронов, испущенных катодом 1, пролетит сквозь отверстие и образует в пространстве за анодом поток параллельно летящих электронов — электронный луч 5 (рис. 175).

Электровакуумный прибор, в котором используется такой поток электронов, называется электронно-лучевой трубкой.
Внутренняя поверхность стеклянного баллона электронно-лучевой трубки против анода покрыта тонким слоем кристаллов, способных светиться при попадании в них быстрых электронов. Эту часть трубки называют экраном (6).
С помощью электрических и магнитных полей можно управлять движением электронов на пути от анода до экрана и заставить электронный луч «рисовать» любую картину на экране. Эта способность электронного луча используется для создания изображений на экране электронно-лучевой трубки телевизора, называемой кинескопом. Изменение яркости свечения пятна на экране достигается путем управления интенсивностью пучка электронов с помощью дополнительного электрода, расположенного между катодом и анодом и работающего по принципу управляющей сетки электровакуумного триода.
В трубке электронно-лучевого осциллографа между анодом и экраном расположены две пары параллельных металлических пластин. Эти пластины называются отклоняющими пластинами. Подача напряжения на вертикально расположенные пластины 4вызывает смещение электронного луча в горизонтальном направлении, подача напряжения на горизонтальные пластины 3вызывает вертикальное отклонение луча. Смещения луча на экране трубки пропорциональны приложенному напряжению, поэтому электронный осциллограф может использоваться в качестве электроизмерительного прибора. 
Для исследования быстропеременных электрических процессов в осциллографе осуществляется развертка — равномерное перемещение электронного луча по горизонтали. Для того чтобы луч перемещался вдоль горизонтальной оси с постоянной скоростью, напряжение на горизонтально отклоняющих пластинах должно изменяться линейно во времени, а для возвращения луча в исходное положение напряжение должно очень быстро падать до нуля. Такая форма напряжения носит название пилообразной (рис. 176).





Просмотр содержимого документа
«15 Ток в полупроводниках »

Урок №2/30

Тема №15: «Строение полупроводников. Энергетические уровни. Электрическая проводимость полупроводников. Полупроводниковые приборы.»

1 Строение полупроводников. Энергетические уровни.

По значению удельного электрического сопротивления полупроводники занимают промежуточное положение между хорошими проводниками и диэлектриками. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и др.), огромное количество сплавов и химических соединений. Почти все неорганические вещества окружающего нас мира – полупроводники. Самым распространенным в природе полупроводником является кремний, составляющий около 30 % земной коры.

Качественное отличие полупроводников от металлов проявляется прежде всего в зависимости удельного сопротивления от температуры. С понижением температуры сопротивление металлов падает. У полупроводников, напротив, с понижением температуры сопротивление возрастает и вблизи абсолютного нуля они практически становятся изоляторами (рис. 1.13.1).

Рисунок 1.13.1.

Зависимость удельного сопротивления ρ чистого полупроводника от абсолютной температуры T

Такой ход зависимости ρ (T) показывает, что у полупроводников концентрация носителей свободного заряда не остается постоянной, а увеличивается с ростом температуры.



Зонная модель электронно-дырочной проводимости полупроводников

      При образовании твердых тел возможна ситуация, когда энергетическая зона, возникшая из энергетических уровней валентных электронов исходных атомов, оказывается полностью заполненной электронами, а ближайшие, доступные для заполнения электронами энергетические уровни отделены от валентной зоны ЕV промежутком неразрешенных энергетических состояний – так называемой запрещенной зоной Еg(рис. 9.4). Выше запрещенной зоны расположена зона разрешенных для электронов энергетических состояний – зона проводимости Еc.

Ширина запрещённой зоны, которую должен преодолеть электрон, чтобы перейти из устойчивого состояния в свободное, является одним из главных критериев разделения твёрдых тел на металлы, полупроводники и изоляторы.

Высокая проводимость металлов объясняется отсутствием запрещённой зоны и наличием при комнатной температуре достаточного количества электронов в зоне проводимости.

Значительная ширина запрещённой зоны изоляторов (более 2 эВ) объясняет практическое отсутствие их проводимости.

У полупроводников ширина зоны колеблется от 0,7 эВ до 1,1 эВ.



Рис. 9.4

      Зона проводимости при 0 К полностью свободна, а валентная зона полностью занята. Подобные зонные структуры характерны для кремния, германия, арсенида галлия (GaAs), фосфида индия (InP) и многих других твердых тел, являющихся полупроводниками.

       При повышении температуры полупроводников и диэлектриков электроны способны получать дополнительную энергию, связанную с тепловым движением kT. У части электронов энергии теплового движения оказывается достаточно для перехода из валентной зоны в зону проводимости, где электроны под действием внешнего электрического поля могут перемещаться практически свободно.

      В этом случае, в цепи с полупроводниковым материалом по мере повышения температуры полупроводника будет нарастать электрический ток. Этот ток связан не только с движением электронов в зоне проводимости, но и с появлением вакантных мест от ушедших в зону проводимости электронов в валентной зоне, так называемых дырок. Вакантное место может быть занято валентным электроном из соседней пары, тогда дырка переместиться на новое место в кристалле.

2 Электрическая проводимость полупроводников.

      Если полупроводник помещается в электрическое поле, то в упорядоченное движение вовлекаются не только свободные электроны, но и дырки, которые ведут себя как положительно заряженные частицы. Поэтому ток I в полупроводнике складывается из электронного In и дырочного Ip токов:   I = In+ Ip.

      Электронно-дырочный механизм проводимости проявляется только у чистых (т.е. без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.     

Механизм электрического тока в полупроводниках нельзя объяснить в рамках модели газа свободных электронов. Рассмотрим качественно этот механизм на примере германия (Ge). В кристалле кремния (Si) механизм аналогичен.

Атомы германия на внешней оболочке имеют четыре слабо связанных электрона. Их называют валентными электронами. В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной, т. е. осуществляется парами валентных электронов. Каждый валентный электрон принадлежит двум атомам (рис. 1.13.2). Валентные электроны в кристалле германия связаны с атомами гораздо сильнее, чем в металлах; поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках на много порядков меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит.

Рисунок 1.13.2.

Парно-электронные связи в кристалле германия и образование электронно-дырочной пары

При повышении температуры некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами. Эти вакансии получили название дырок. Вакантное место может быть занято валентным электроном из соседней пары, тогда дырка переместится на новое место в кристалле. При заданной температуре полупроводника в единицу времени образуется определенное количество электронно-дырочных пар. В то же время идет обратный процесс – при встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами германия. Этот процесс называется рекомбинацией. Электронно-дырочные пары могут рождаться также при освещении полупроводника за счет энергии электромагнитного излучения. В отсутствие электрического поля электроны проводимости и дырки участвуют в хаотическом тепловом движении.

При наличии примесей электрическая проводимость полупроводников сильно изменяется. Например, добавка в кристалл кремния примесей фосфора в количестве 0,001 атомного процента уменьшает удельное сопротивление более чем на пять порядков. Такое сильное влияние примесей может быть объяснено на основе изложенных выше представлений о строении полупроводников.

Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла.

Проводимость полупроводников при наличии примесей называется примесной проводимостью. Различают два типа примесной проводимости – электронную и дырочную.

Электронная проводимость возникает, когда в кристалл германия с четырехвалентными атомами введены пятивалентные атомы (например, атомы мышьяка, As).

Рисунок 1.13.3.

Атом мышьяка в решетке германия. Полупроводник n-типа

На рис. 1.13.3 показан пятивалентный атом мышьяка, оказавшийся в узле кристаллической решетки германия. Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказался излишним; он легко отрывается от атома мышьяка и становится свободным. Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки. Примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла, называется донорной примесью. В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника – в тысячи и даже миллионы раз. Удельное сопротивление проводника с большим содержанием примесей может приближаться к удельному сопротивлению металлического проводника.

В кристалле германия с примесью мышьяка есть электроны и дырки, ответственные за собственную проводимость кристалла. Но основным типом носителей свободного заряда являются электроны, оторвавшиеся от атомов мышьяка. В таком кристалле nn  np. Такая проводимость называется электронной, а полупроводник, обладающий электронной проводимостью, называется полупроводником n-типа.

Рисунок 1.13.4.

Атом индия в решетке германия. Полупроводник p-типа

Дырочная проводимость возникает, когда в кристалл германия введены трехвалентные атомы (например, атомы индия, In). На рис. 1.13.4 показан атом индия, который с помощью своих валентных электронов создал ковалентные связи лишь с тремя соседними атомами германия. На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия. Примесь атомов, способных захватывать электроны, называется акцепторной примесью. В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места (дырки). На эти места могут перескакивать электроны из соседних ковалентных связей, что приводит к хаотическому блужданию дырок по кристаллу.

Наличие акцепторной примеси резко снижает удельное сопротивление полупроводника за счет появления большого числа свободных дырок. Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов, которые возникли из-за механизма собственной электропроводности полупроводника: np  nn. Проводимость такого типа называется дырочной проводимостью. Примесный полупроводник с дырочной проводимостью называется полупроводником p-типа. Основными носителями свободного заряда в полупроводниках p-типа являются дырки.

Следует подчеркнуть, что дырочная проводимость в действительности обусловлена эстафетным перемещением по вакансиям от одного атома германия к другому электронов, которые осуществляют ковалентную связь.

Для полупроводников n- и p-типов закон Ома выполняется в определенных интервалах сил тока и напряжений при условии постоянства концентраций свободных носителей.



3 Электрические свойства "p-n" перехода

"p-n" переход (или электронно-дырочный переход) - область контакта двух полупроводников, где происходит смена проводимости с электронной на дырочную (или наоборот).

В кристалле полупроводника введением примесей можно создать такие области. В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия. электронов и дырок и образуется запирающий электрический слой. Электрическое поле запирающего слоя препятствует дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника.



Внешнее электрическое поле влияет на сопротивление запирающего слоя.
При прямом (пропускном) направлении внешнего эл.поля эл.ток проходит через границу двух полупроводников.
Т.к. электроны и дырки движутся навстречу друг другу к границе раздела, то электроны, переходя границу, заполняют дырки. Толщина запирающего слоя и его сопротивление непрерывно уменьшаются.

Пропускной режим р-n перехода:

При запирающем (обратном) направлении внешнего электрического поля электрический ток через область контакта двух полупроводников проходить не будет.
Т.к. электроны и дырки перемещаются от границы в противоположные стороны, то запирающий слой утолщается, его сопротивление увеличивается.

Запирающий режим р-n перехода:


Таким образом, электронно-дырочный переход обладает односторонней проводимостью.


4 Полупроводниковые приборы.

Яркая зависимость электропроводимости полупроводников от температуры используется в приборах называемых термосопротивлениями или термисторами. Они используются для измерения температуры в различных машинах и агрегатах, для измерения температуры почвы на различной глубине, всюду, где необходимо поддерживать постоянную температуру. Чувствительные термисторы можно вводить непосредственно в кровеносный сосуд.





Полупроводник с одним "p-n" переходом называется полупроводниковым диодом.

При наложении эл.поля в одном направлении сопротивление полупроводника велико,в обратном - сопротивление мало.



Полупроводниковые диоды - основные элементы выпрямителей переменного тока

В полупроводниковых транзисторах также используются свойства "р-n "переходов.


- транзисторы используются в схемотехнике радиоэлектронных приборов.




.



Просмотр содержимого документа
«16 Магнитное поле »

Урок №2/32

Тема №16: «Магнитное поле. Вектор индукции магнитного поля. Магнитная проницаемость среды. Напряжённость магнитного поля. Магнитное поле прямолинейного тока, кругового тока и соленоида.»


1 Устный фронтальный опрос.

- Какие вещества называются полупроводниками? Приведите примеры полупроводников.

- Какова зависимость сопротивления полупроводника от температуры?

- Как зонная теория объясняет различие в проводимости проводников, полупроводников и диэлектриков?

- Объясните механизм собственной и примесной проводимости полупроводников.

- Что такое термистор? фоторезистор?

- Что такое р-n-переход? Каково его основное свойство?

- Как устроен и где применяется полупроводниковый диод?

2Магнитное поле. Явления взаимного притяжения разноименных и отталкивания одноименных электрических зарядов во многом сходны с явлениями притяжения разноименных и отталкивания одноименных полюсов магнита. Однако установить связь между электрическими и магнитными явлениями не удавалось.
   В 1820 г. датский физик Ханс Эрстед (1777—1851) обнаружил, что магнитная стрелка поворачивается при пропускании электрического тока через проводник, находящийся около нее (рис. 177).

В том же году французский физик Андре Ампер (1775—1836) установил, что два проводника, расположенные параллельно друг другу, испытывают взаимное притяжение при пропускании через них электрического тока в одном направлении и отталкиваются, если токи имеют противоположные направления (рис. 178).

Явление взаимодействия электрических токов Ампер назвал электродинамическим взаимодействием.
   На основании своих опытов Ампер пришел к выводу, что взаимодействие тока с магнитом и магнитов между собой можно объяснить, если предположить, что внутри магнита существуют незатухающие молекулярные круговые токи (рис. 179).



Тогда все магнитные явления объясняются взаимодействием движущихся электрических зарядов, никаких особых магнитных зарядов в природе нет

Магнитное взаимодействие движущихся электрических зарядов согласно представлениям теории близкодействия объясняется следующим образом. Всякий движущийся электрический заряд создает в окружающем пространстве магнитное поле. Магнитное поле непрерывно в пространстве и действует на другие движущиеся электрические заряды.

3 Магнитная индукция. Сила Ампера.

Сила, с которой магнитное поле действует на проводник с током, называется силой Ампера.
   Экспериментальное изучение магнитного взаимодействия показывает, что модуль силы Ампера пропорционален длине L проводника с током и зависит от ориентации проводника в магнитном поле.

Для характеристики способности магнитного поля оказывать силовое действие на проводник с током вводится векторная величина — магнитная индукция:

B = F/IL (47)

Направление силы Ампера определяется с помощью « правила левой руки» (рис.180):

Если кисть левой руки расположить так, что 4 вытянутых пальца указывают направление тока в проводнике, а вектор магнитной индукции входит в ладонь, то отогнутый (в плоскости ладони) на 900 большой палец покажет направление силы, действующей на отрезок проводника.

Единица индукции в этом случае определяется как индукция такого магнитного поля, в котором на 1 м проводника при силе тока 1 А действует максимальная сила Ампера 1 Н. Эта единица называется Тесла (Тл) в честь выдающегося югославского электротехника Николы Тесла (1856—1943).

. Формулу (47) можно использовать для определения модуля максимального значения силы Ампера, действующей на прямолинейный проводник с током в магнитном поле с индукцией :

Fmax = BIL (48)

где L — длина проводника; I — сила тока.
   Опыт показывает, что при расположении проводника с током под углом к вектору магнитной индукции для нахождения модуля силы Ампера следует применять выражение

F = BILsinα (49)

Сила Ампера может быть выражена через силы, действующие на отдельные носители заряда.  Пусть концентрация носителей свободного заряда в проводнике есть n, а q – заряд носителя. Тогда произведение nqυS, где υ – модуль скорости упорядоченного движения носителей по проводнику, а S – площадь поперечного сечения проводника, равно току, текущему по проводнику:

I = qnυS.

  Выражение для силы Ампера можно записать в виде:

F = BqnʋSLsinα

 Так как полное число N носителей свободного заряда в проводнике длиной Δl и сечением S равно nSΔl, то сила, действующая на одну заряженную частицу, равна

Fл = qʋBsinα (50)

  Эту силу называют силой Лоренца. Угол α в этом выражении равен углу между скоростью ʋи вектором магнитной индукции B. Направление силы Лоренца, действующей на положительно заряженную частицу, так же, как и направление силы Ампера, может быть найдено по правилу левой руки. Взаимное расположение векторовB,ʋи Fл для положительно заряженной частицы показано на рис. 4.18.1.

1

Рисунок 4.18.1.

Сила Лоренца направлена перпендикулярно векторам В и ʋ.При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает. Поэтому модуль вектора скорости при движении частицы не изменяется. Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость лежит в плоскости, перпендикулярной вектору В, то частица будет двигаться по окружности .


  Сила Лоренца в этом случае играет роль центростремительной силы (рис. 4.18.2).

2

Рисунок 4.18.2. Круговое движение заряженной частицы в однородном магнитном поле.



4 Линии магнитной индукции.

При исследовании магнитного поля с помощью контура с током за направление вектора магнитной индукции в том месте, где расположена рамка с током, принимают направление перпендикуляра к плоскости, в которой устанавливается свободно вращающаяся рамка с током (рис. 181).

Вектор индукции направлен в ту сторону, куда перемещался бы буравчик при вращении по направлению тока в рамке (рис. 182).

Линия, в любой точке которой вектор магнитной индукции направлен по касательной, называется линией магнитной индукции.
   Если во всех точках некоторой части пространства вектор индукции магнитного поля имеет одинаковое значение по модулю и одинаковое направление, то магнитное поле в этой части пространства называется однородным (рис. 183).

Линии магнитной индукции магнитного поля прямого проводника с током представляют собой окружности, лежащие в плоскостях, перпендикулярных проводнику. Центры окружностей находятся на оси проводника.
   Направление вектора магнитной индукции в этом случае определяется следующим правилом:

Если смотреть вдоль проводника по направлению тока, т. е. по направлению движения положительных зарядов, то вектор магнитной индукции направлен по ходу часовой стрелки (рис. 184). Если ток направлен к наблюдателю, то вектор магнитной индукции направлен против хода часовой стрелки.

Линии индукции магнитного поля, созданного катушкой с током, показаны на рисунке 185.

Вектор магнитной индукции входит в катушку с той стороны, с какой направление тока в витках катушки представляется соответствующим ходу часовой стрелки.

5 Напряжённость магнитного поля. Магнитная проницаемость.

Далее следует ввести еще одну величину, характеризующую магнитное действие электрического тока. Предположим, что ток проходит по проводу длинной катушки, внутри которой расположен намагничиваемый материал. Намагничивающей силой называется произведение электрического тока в катушке на число ее витков (эта сила измеряется в амперах, так как число витков – величина безразмерная). Напряженность магнитного поля Н равна намагничивающей силе, приходящейся на единицу длины катушки. Таким образом, величина Н измеряется в амперах на метр; ею определяется намагниченность, приобретаемая материалом внутри катушки.

В вакууме магнитная индукция B0 пропорциональна напряженности магнитного поля Н:

В00Н (51)

где µ = 4π∙10-7 Гн/м - магнитная постоянная.

Напряженность магнитного поля необходима для определения магнитной индукции поля, создаваемого токами различной конфигурации в различных средах. Напряженность магнитного поля характеризует магнитное поле в вакууме.

Напряженность магнитного поля (формула) векторная физическая величина, равная:

где µ - магнитная проницаемость – физическая величина, показывающая, во сколько раз индукция магнитного поля в однородной среде отличается от магнитной индукции внешнего поля в вакууме.

Напряженность магнитного поля в СИ - ампер на метр (А/м).

Векторы индукции (В) и напряженности магнитного поля (Н) совпадают по направлению. Напряженность магнитного поля зависит только от силы тока, протекающего по проводнику, и его геометрии.

В диамагнетике внешнее магнитное поле незначительно ослабляется ( µвисмута=0,9998)диамагнетикам относятся например, инертные газы, водород, фосфор, цинк, золото, азот, кремний, висмут, медь, серебро, в парамагнетике незначительно усиливается ( , µалюминия=1,000023)алюминий, платина, кислород, марганец, в ферромагнетике значительно усиливается (µ1),  µстали = 8.103 (железо, никель, кобальт и их сплавы). Сплав железа с никелем: µ =2,5.105..


6 Магнитное поле проводников различной формы.

Магнитное поле прямолинейного тока наблюдают, продев сквозь расположенный горизонтально лист картона вертикальный прямолинейный провод, представляющий собой часть электрической цепи. Опилки-стрелочки при замыкании тока в цепи и после легкого постукивания по листу образуют цепочки в виде окружностей с общим центром на оси тока. Поэтому магнитное поле электрического тока графически изображают в виде линий магнитной индукции, аналогичных линиям напряженностиэлектростатического поля. Линии магнитной индукции представляют собой окружности с центрами на оси тока, расположенные в плоскостях, перпендикулярных направлению тока. Их направление определяют по правилу правого винта: при поступательном движении винта в направлении тока его вращение указывает направление магнитного поля этого тока.
Различие между линиями магнитной индукции и линиями напряженности электростатического поля: первые замкнуты и окружают электрический ток; вторые – разомкнуты, начинаются на поверхности положительно заряженных тел и оканчиваются на поверхности отрицательно заряженных.






Магнитное поле витка с током, или контура тока, показано рисунке(кружок с точкой означает, что в этом сечении ток направлен перпендикулярно плоскости рисунка к нам, а кружок с крестом - что ток направлен от нас). Направление линий магнитной индукции вдоль оси витка укажет магнитная стрелка, помещенная в его центре. Две противоположные стороны обтекаемой током поверхности можно сопоставить с двумя полюсами магнитной стрелки: сторону, из которой линии магнитной индукции выходят – с северным полюсом магнитной стрелки, а в которую они входят – с южным.
Направление магнитного поля витка с током можно определить также по правилу правого винта: если поместить острие винта в центре витка и вращать винт в направлении тока, то его поступательное движение укажет направление линий магнитной индукции.
Таким образом, существует взаимная связь направлений тока в замкнутом проводнике и его магнитного поля, их «сцепленность».
 






Линии магнитной индукции катушки с током, или соленоида, входят в катушку со стороны ее южного магнитного полюса и выходят из северного. Внутри катушки, длина которой во много раз больше ее диаметра, магнитное поле однородно, т. е. линии магнитной индукции параллельны и плотность их одинакова.

Магнитное поле постоянного магнита можно наблюдать, насыпав железные опилки на лист картона, положенный на магнит. Вне прямого магнита оно похоже на магнитное поле катушки с током. С помощью железных опилок можно наблюдать магнитное поле только вне постоянного магнита .Но линии магнитной индукции продолжаются и внутри постоянного магнита и замыкаются, как показано на рисунке.

7 Задачи на закрепление изученной темы.

1 Прямой проводник длиной 15 см помещён в однородное магнитное поле с индукцией 0,4 Тл, направленной перпендикулярно направлению тока. Сила тока, протекающего по проводнику, равна 6 А. Найдите силу Ампера, действующую на проводник.

2 Индукция однородного магнитного поля В = 0,3 Тл направлена в положительном направлении оси Х. Найдите модуль и направление силы Лоренца, действующей на протон, движущийся в положительном направлении оси Y со скоростью ʋ=5∙106 м/с. (заряд протона е+ = 1,6∙10-19 Кл).

3 В проводнике с длиной активной части 8 см сила тока равна 50 А. Он находится в однородном магнитном поле с индукцией 20 мТл. Какую работу совершил источник тока, если проводник переместился на 10 см перпендикулярно линиям индукции?


 




Дополнительная информация

3

Рисунок 4.18.3. Движение заряженных частиц в вакуумной камере циклотрона.

Между полюсами сильного электромагнита помещается вакуумная камера, в которой находятся два электрода в виде полых металлических полуцилиндров (дуантов). К дуантам приложено переменное электрическое напряжение, частота которого равна циклотронной частоте. Заряженные частицы инжектируются в центре вакуумной камеры. Частицы ускоряются электрическим полем в промежутке между дуантами. Внутри дуантов частицы движутся под действием силы Лоренца по полуокружностям, радиус которых растет по мере увеличения энергии частиц.

Каждый раз, когда частица пролетает через зазор между дуантами, она ускоряется электрическим полем. Таким образом, в циклотроне, как и во всех других ускорителях, заряженная частица ускоряется электрическим полем, а удерживается на траектории магнитным полем. Циклотроны позволяют ускорять протоны до энергии порядка 20 МэВ. Однородные магнитные поля используются во многих приборах и, в частности, в масс-спектрометрах – устройствах, с помощью которых можно измерять массы заряженных частиц – ионов или ядер различных атомов.

Масс-спектрометры используются для разделения изотопов, то есть ядер атомов с одинаковым зарядом, но разными массами (например, 20Ne и 22Ne). Простейший масс-спектрометр показан на рис. 4.18.4. Ионы, вылетающие из источника S, проходят через несколько небольших отверстий, формирующих узкий пучок. Затем они попадают в селектор скоростей, в котором частицы движутся в скрещенных однородных электрическом и магнитном полях. Электрическое поле создается между пластинами плоского конденсатора, магнитное поле – в зазоре между полюсами электромагнита. Начальная скорость заряженных частиц направлена перпендикулярно векторам иНа частицу, движущуюся в скрещенных электрическом и магнитном полях, действуют электрическая сила и магнитная сила Лоренца. При условии E = υB эти силы точно уравновешивают друг друга. Если это условие выполняется, частица будет двигаться равномерно и прямолинейно и, пролетев через конденсатор, пройдет через отверстие в экране. При заданных значениях электрического и магнитного полей селектор выделит частицы, движущиеся со скоростью υ = E / B. Далее частицы с одним и тем же значением скорости попадают в камеру масс-спектрометра, в которой создано однородное магнитное поле Частицы движутся в камере в плоскости, перпендикулярной магнитному полю, под действием силы Лоренца. Траектории частиц представляют собой окружности радиусов R = mυ / qB'. Измеряя радиусы траекторий при известных значениях υ и B' можно определить отношение q / m. В случае изотопов (q1 = q2) масс-спектрометр позволяет разделить частицы с разными массами. Современные масс-спектрометры позволяют измерять массы заряженных частиц с точностью выше 10–4.

4

Рисунок 4.18.4. Селектор скоростей и масс-спектрометр.

Если скорость частицы имеет составляющую вдоль направления магнитного поля, то такая частица будет двигаться в однородном магнитном поле по спирали. При этом радиус спирали R зависит от модуля перпендикулярной магнитному полю составляющей υ┴ вектораа шаг спирали p – от модуля продольной составляющей υ|| (рис. 4.18.5).

5

Рисунок 4.18.5. Движение заряженной частицы по спирали в однородном магнитном поле.

Таким образом, траектория заряженной частицы как бы навивается на линии магнитной индукции. Это явление используется в технике для магнитной термоизоляции высокотемпературной плазмы, то есть полностью ионизированного газа при температуре порядка 106 K. Вещество в таком состоянии получают в установках типа «Токамак» при изучении управляемых термоядерных реакций. Плазма не должна соприкасаться со стенками камеры. Термоизоляция достигается путем создания магнитного поля специальнойконфиругации. В качестве примера на рис. 4.18.6 изображена траектория движения заряженной частицы в магнитной «бутылке» (или ловушке).

6

Рисунок 4.18.6. Магнитная «бутылка». Заряженные частицы не выходят за пределы «бутылки». Магнитное поле «бутылки» может быть создано с помощью двух круглых катушек с током.

Аналогичное явление происходит в магнитном поле Земли, которое является защитой для всего живого от потоков заряженных частиц из космического пространства. Быстрые заряженные частицы из космоса (главным образом от Солнца) «захватываются» магнитным полем Земли и образуют так называемые радиационные пояса (рис. 4.18.7), в которых частицы, как в магнитных ловушках, перемещаются туда и обратно по спиралеобразным траекториям между северным и южным магнитными полюсами за времена порядка долей секунды. Лишь в полярных областях некоторая часть частиц вторгается в верхние слои атмосферы, вызывая полярные сияния. Радиационные пояса Земли простираются от расстояний порядка 500 км до десятков земных радиусов. Следует вспомнить, что южный магнитный полюс Земли находится вблизи северного географического полюса (на северо-западе Гренландии). Природа земного магнетизма до сих пор не изучена.

7

Рисунок 4.18.7. Радиационные пояса Земли. Быстрые заряженные частицы от Солнца (в основном электроны и протоны) попадают в магнитные ловушки радиационных поясов. Частицы могут покидать пояса в полярных областях и вторгаться в верхние слои атмосферы, вызывая полярные сияния.




Просмотр содержимого документа
«17 Магнитный поток»

Урок №2/34

Тема №17: «Действие магнитного поля на проводник с током. Закон Ампера. Действие поля на движущийся заряд. Сила Лоренца. Магнитный поток. Работа по перемещению проводника с током в магнитном поле.»

1 Действие магнитного поля на проводник с током. Сила Ампера.

Сила, с которой магнитное поле действует на проводник с током, называется силой Ампера.
   Экспериментальное изучение магнитного взаимодействия показывает, что модуль силы Ампера пропорционален длине L проводника с током и зависит от ориентации проводника в магнитном поле.

Направление силы Ампера определяется с помощью « правила левой руки» (рис.180):

Если кисть левой руки расположить так, что 4 вытянутых пальца указывают направление тока в проводнике, а вектор магнитной индукции входит в ладонь, то отогнутый (в плоскости ладони) на 900 большой палец покажет направление силы, действующей на отрезок проводника.

Единица индукции в этом случае определяется как индукция такого магнитного поля, в котором на 1 м проводника при силе тока 1 А действует максимальная сила Ампера 1 Н. Эта единица называется Тесла (Тл) в честь выдающегося югославского электротехника Николы Тесла (1856—1943).

. Формулу (47) можно использовать для определения модуля максимального значения силы Ампера, действующей на прямолинейный проводник с током в магнитном поле с индукцией :

Fmax = BIL (47)

где L — длина проводника; I — сила тока.
   Опыт показывает, что при расположении проводника с током под углом к вектору магнитной индукции для нахождения модуля силы Ампера следует применять выражение

F = BILsinα (48)

2 Действие поля на движущийся заряд. Сила Лоренца.

Сила Ампера может быть выражена через силы, действующие на отдельные носители заряда.  Пусть концентрация носителей свободного заряда в проводнике есть n, а q – заряд носителя. Тогда произведение nqυS, где υ – модуль скорости упорядоченного движения носителей по проводнику, а S – площадь поперечного сечения проводника, равно току, текущему по проводнику:

I = qnυS.

  Выражение для силы Ампера можно записать в виде:

F = BqnʋSLsinα

  Так как полное число N носителей свободного заряда в проводнике длиной Δl и сечением S равно nSΔl, то сила, действующая на одну заряженную частицу, равна

Fл = qʋBsinα (49)

  Эту силу называют силой Лоренца. Угол α в этом выражении равен углу между скоростью ʋ и вектором магнитной индукции B. Направление силы Лоренца, действующей на положительно заряженную частицу, так же, как и направление силы Ампера, может быть найдено по правилу левой руки. Взаимное расположение векторов B, ʋ и Fл для положительно заряженной частицы показано на рис. 4.18.1.

1

Рисунок 4.18.1.

Сила Лоренца направлена перпендикулярно векторам В и ʋ. При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает. Поэтому модуль вектора скорости при движении частицы не изменяется. Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость лежит в плоскости, перпендикулярной вектору В, то частица будет двигаться по окружности .


  Сила Лоренца в этом случае играет роль центростремительной силы (рис. 4.18.2).

2

Рисунок 4.18.2. Круговое движение заряженной частицы в однородном магнитном поле.






3 Магнитный поток.

Контур, помещенный в однородное магнитное поле, пронизывается магнитным потоком
( потоком векторов магнитной индукции).

Ф - магнитный поток, пронизывающий площадь контура, зависит от
величины вектора магнитной индукции, площади контура и его ориентации относительно линий индукции магнитного поля.

Если вектор магнитной индукции перпендикулярен площади контура, то магнитный поток максимальный.

Если вектор магнитной индукции параллелен площади контура, то магнитный поток равен нулю.

 

В однородном магнитном поле, модуль вектора индукции которого равен В, помещен плоский замкнутый контур площадью S. Нормаль n к плоскости контура составляет угол α с направлением вектора магнитной индукции В.

Магнитным потоком через поверхность называется величина Ф, определяемая соотношением:

Φ = B · S · cos α (50)

Единица измерения магнитного потока в систем СИ - 1 Вебер (1 Вб).

1 Вб = 1 Тл · 1 м2

Магнитный поток через контур максимален ,если плоскость контура перпендикулярна магнитному полю. Значит угол a равен 00 .Тогда магнитный поток рассчитывается по формуле:

Φmax = B · S (51)

Магнитный поток через контур равен нулю ,если контур располагается параллельно магнитному полю.

Значит угол a равен 900 .

4 Работа по перемещению проводника с током в магнитном поле.

Рассмотрим контур с током, образованный неподвижными проводами и скользящей по ним подвижной перемычкой длиной l (рис. 2.17). Этот контур находится во внешнем однородном магнитном поле , перпендикулярном к плоскости контура. При показанном на рисунке направлении тока I, вектор  сонаправлен с .

Рис. 2.17

      На элемент тока I (подвижный провод) длиной l действует сила Ампера, направленная вправо:

F = IBl

      Пусть проводник l переместится параллельно самому себе на расстояние  dx. При этом совершится работа:

dA = Fdx = IBl dx = IB dS = I dФ

      Работа, совершаемая проводником с током при перемещении, численно равна произведению тока на магнитный поток, пересечённый этим проводником.

      Формула остаётся справедливой, если проводник любой формы движется под любым углом к линиям вектора магнитной индукции.


7 Задачи на закрепление изученной темы.1 Прямой проводник длиной 15 см помещён в однородное магнитное поле с индукцией 0,4 Тл, направленной перпендикулярно направлению тока. Сила тока, протекающего по проводнику, равна 6 А. Найдите силу Ампера, действующую на проводник.

2 Индукция однородного магнитного поля В = 0,3 Тл направлена в положительном направлении оси Х. Найдите модуль и направление силы Лоренца, действующей на протон, движущийся в положительном направлении оси Y со скоростью ʋ=5∙106 м/с. (заряд протона е+ = 1,6∙10-19 Кл).

3 В проводнике с длиной активной части 8 см сила тока равна 50 А. Он находится в однородном магнитном поле с индукцией 20 мТл. Какую работу совершил источник тока, если проводник переместился на 10 см перпендикулярно линиям индукции?



Дополнительная информация

3

Рисунок 4.18.3. Движение заряженных частиц в вакуумной камере циклотрона.

Между полюсами сильного электромагнита помещается вакуумная камера, в которой находятся два электрода в виде полых металлических полуцилиндров (дуантов). К дуантам приложено переменное электрическое напряжение, частота которого равна циклотронной частоте. Заряженные частицы инжектируются в центре вакуумной камеры. Частицы ускоряются электрическим полем в промежутке между дуантами. Внутри дуантов частицы движутся под действием силы Лоренца по полуокружностям, радиус которых растет по мере увеличения энергии частиц.

Каждый раз, когда частица пролетает через зазор между дуантами, она ускоряется электрическим полем. Таким образом, в циклотроне, как и во всех других ускорителях, заряженная частица ускоряется электрическим полем, а удерживается на траектории магнитным полем. Циклотроны позволяют ускорять протоны до энергии порядка 20 МэВ. Однородные магнитные поля используются во многих приборах и, в частности, в масс-спектрометрах – устройствах, с помощью которых можно измерять массы заряженных частиц – ионов или ядер различных атомов.

Масс-спектрометры используются для разделения изотопов, то есть ядер атомов с одинаковым зарядом, но разными массами (например, 20Ne и 22Ne). Простейший масс-спектрометр показан на рис. 4.18.4. Ионы, вылетающие из источника S, проходят через несколько небольших отверстий, формирующих узкий пучок. Затем они попадают в селектор скоростей, в котором частицы движутся в скрещенных однородных электрическом и магнитном полях. Электрическое поле создается между пластинами плоского конденсатора, магнитное поле – в зазоре между полюсами электромагнита. Начальная скорость заряженных частиц направлена перпендикулярно векторам и На частицу, движущуюся в скрещенных электрическом и магнитном полях, действуют электрическая сила и магнитная сила Лоренца. При условии E = υB эти силы точно уравновешивают друг друга. Если это условие выполняется, частица будет двигаться равномерно и прямолинейно и, пролетев через конденсатор, пройдет через отверстие в экране. При заданных значениях электрического и магнитного полей селектор выделит частицы, движущиеся со скоростью υ = E / B. Далее частицы с одним и тем же значением скорости попадают в камеру масс-спектрометра, в которой создано однородное магнитное поле Частицы движутся в камере в плоскости, перпендикулярной магнитному полю, под действием силы Лоренца. Траектории частиц представляют собой окружности радиусов R = mυ / qB'. Измеряя радиусы траекторий при известных значениях υ и B' можно определить отношение q / m. В случае изотопов (q1 = q2) масс-спектрометр позволяет разделить частицы с разными массами. Современные масс-спектрометры позволяют измерять массы заряженных частиц с точностью выше 10–4.

4

Рисунок 4.18.4. Селектор скоростей и масс-спектрометр.

Если скорость частицы имеет составляющую вдоль направления магнитного поля, то такая частица будет двигаться в однородном магнитном поле по спирали. При этом радиус спирали R зависит от модуля перпендикулярной магнитному полю составляющей υ┴ вектора а шаг спирали p – от модуля продольной составляющей υ|| (рис. 4.18.5).

5

Рисунок 4.18.5. Движение заряженной частицы по спирали в однородном магнитном поле.

Таким образом, траектория заряженной частицы как бы навивается на линии магнитной индукции. Это явление используется в технике для магнитной термоизоляции высокотемпературной плазмы, то есть полностью ионизированного газа при температуре порядка 106 K. Вещество в таком состоянии получают в установках типа «Токамак» при изучении управляемых термоядерных реакций. Плазма не должна соприкасаться со стенками камеры. Термоизоляция достигается путем создания магнитного поля специальной конфиругации. В качестве примера на рис. 4.18.6 изображена траектория движения заряженной частицы в магнитной «бутылке» (или ловушке).

6

Рисунок 4.18.6. Магнитная «бутылка». Заряженные частицы не выходят за пределы «бутылки». Магнитное поле «бутылки» может быть создано с помощью двух круглых катушек с током.

Аналогичное явление происходит в магнитном поле Земли, которое является защитой для всего живого от потоков заряженных частиц из космического пространства. Быстрые заряженные частицы из космоса (главным образом от Солнца) «захватываются» магнитным полем Земли и образуют так называемые радиационные пояса (рис. 4.18.7), в которых частицы, как в магнитных ловушках, перемещаются туда и обратно по спиралеобразным траекториям между северным и южным магнитными полюсами за времена порядка долей секунды. Лишь в полярных областях некоторая часть частиц вторгается в верхние слои атмосферы, вызывая полярные сияния. Радиационные пояса Земли простираются от расстояний порядка 500 км до десятков земных радиусов. Следует вспомнить, что южный магнитный полюс Земли находится вблизи северного географического полюса (на северо-западе Гренландии). Природа земного магнетизма до сих пор не изучена.






Просмотр содержимого документа
«18 Электромагнитная индукция »

Урок №2/36

Тема №18: «Явление электромагнитной индукции. Опыты Фарадея. Закон электромагнитной индукции. ЭДС индукции, наводимая магнитным полем в движущихся проводниках.»


1 Тест по темам №16 и №17.


2 Явление электромагнитной индукции. Опыты Фарадея.

Можно ли в проводнике (без подключения источника питания ) создать электрический ток с помощью магнитного поля?

 Английский ученый Майкл Фарадей проводил свои опыты в течение 10 лет, прежде чем утвердительно ответил на этот вопрос и пришел к выводу о существовании явления э/м индукции.

Его опыт обобщил и перевел на язык формул Дж.Максвелл, т.к. в книге Фарадея не было ни одной формулы!

1831 г. - Фарадей обнаружил, что в замкнутом проводящем контуре при изменении магнитного поля возникает индукционный ток.

Явление электромагнитной индукции:
При всяком изменении магнитного потока, пронизывающего контур замкнутого проводника, в этом проводнике возникает индукционный (или наведенный) электрический ток, существующий в течение всего процесса изменения магнитного потока.

ОПЫТЫ ФАРАДЕЯ:

по обнаружению явления электромагнитной индукции:

-движение магнита относительно катушки (или наоборот);


-движение катушек относительно друг друга;

-изменение силы тока в цепи первой катушки
( с помощью реостата или замыканием и размыканием выключателя);

- вращением контура в магнитном поле;

- вращением магнита внутри контура.




3 Закон электромагнитной индукции.

Экспериментальное исследование зависимости ЭДС индукции от изменения магнитного потока привело к установлению закона электромагнитной индукции: ЭДС индукции в замкнутом контуре пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром.
   В СИ единица магнитного потока выбрана такой, чтобы коэффициент пропорциональности между ЭДС индукции и изменением магнитного потока был равен единице. При этом закон электромагнитной индукции формулируется следующим образом: ЭДС индукции в замкнутом контуре равна модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:

Ɛi = - ΔФ/Δt (54)



   ЭДС индукции в катушке. Если в последовательно соединенных контурах происходят одинаковые изменения магнитного потока, то ЭДС индукции в них равна сумме ЭДС индукции в каждом из контуров. Поэтому при изменении магнитного потока в катушке, состоящей из n одинаковых витков провода, общая ЭДС индукции в n раз больше ЭДС индукции в одиночном контуре:

Ɛi = -n ΔФ/Δt (55)

4 ЭДС индукции, наводимая в проводнике, движушемся в магнитном поле.

   

ЭДС индукции возникает в любом отрезке проводника, движущемся в магнитном поле и пересекающем линии магнитной индукции. ЭДС индукции в таком «микрогенераторе» можно рассчитать с помощью схемы, представленной на Рис.1. По параллельным металлическим «рельсам», замкнутым с одной стороны проводящей перемычкой AB, в однородном поле с магнитной индукцией B с постоянной скоростью v скользит проводящий «мостик» CD длиной l . За время Δt магнитный поток, пронизывающий контур ABCD, возрастает на величину ΔФ = Bvl·Δt, откуда

ΔФ/Δt = Bvl

Согласно основному закону электромагнитной индукции ЭДС, индуктируемая в контуре, определяется соотношением

Ɛi = -ΔФ/Δt = -Bvl (56)



Так как все элементы контура, кроме «мостика», неподвижны относительно магнитного поля, то (56) — это и есть ЭДС, возникающая в движущемся проводнике.

Эта же ЭДС возникает и в незамкнутом проводящем отрезке, движущемся в магнитном поле (Рис. 2). Считается, что при перемещении проводящего отрезка в магнитном поле силой, «разделяющей» заряды q в проводнике и создающей на концах такого «микрогенератора» индукционную ЭДС, является магнитная составляющая силы Лоренца:

Если скорость движения проводника постоянна, то и ЭДС индукции остается постоянной. В момент остановки заряды в проводнике под действием кулоновских сил «схлопываются» и микрогенератор практически мгновенно разряжается.

5 Задачи на закрепление изученной темы.

1 Магнитный поток, пронизывающий замкнутый контур проводника сопротивлением 2,4 Ом, равномерно изменился на 6 Вб за 0,5 с. Какова сила индукционного тока в этот момент?

2 В катушке, состоящей из 75 витков, магнитный поток равен 4,8∙10-3 Вб. За какое время должен исчезнуть этот поток, чтобы в катушке возникла средняя ЭДС индукции 0,74 В?

3 Рассчитайте разность потенциалов на концах крыльев самолёта, имеющих длину 10 м, если скорость самолёта при горизонтальном полёте 720 км/ч, а вертикальная составляющая индукции магнитного поля Земли 0,5∙10-4 Тл.


  




 

Просмотр содержимого документа
«19 Правило Ленца»

Урок №2/38

Тема №19: «Правило Ленца. Вихревое электрическое поле. Роль магнитных полей в явлениях, происходящих на Солнце.»

1 Тест по теме «Явление электромагнитной индукции.» (ТС-13)

2 Правило Ленца.

Опыт показывает, что направление индукционного тока в контуре зависит от того, возрастает или убывает магнитный поток, пронизывающий контур, а также от направления вектора индукции магнитного поля относительно контура. Общее правило, позволяющее определить направление индукционного тока в контуре, было установлено в 1833 г. Э. X. Ленцем.
   Правило Ленца можно наглядно показать с помощью легкого алюминиевого кольца (рис. 195).

Опыт показывает, что при внесении постоянного магнита кольцо отталкивается от него, а при удалении притягивается к магниту. Результат опытов не зависит от полярности магнита.
   Отталкивание и притяжение сплошного кольца объясняется возникновением индукционного тока в кольце при изменениях магнитного потока через кольцо и действием на индукционный ток магнитного поля. Очевидно, что при вдвигании магнита в кольцо индукционный ток в нем имеет такое направление, что созданное этим током магнитное поле противодействует внешнему магнитному полю, а при выдвигании магнита индукционный ток в нем имеет такое направление, что вектор индукции его магнитного поля совпадает по направлению с вектором индукции внешнего поля.
   Общая формулировка правила Ленца: возникающий в замкнутом контуре индукционный ток имеет такое направление, что созданный им магнитный поток через площадь, ограниченную контуром, стремится компенсировать то изменение магнитного потока, которым вызывается данный ток.

.). Рис. 4.20.2 иллюстрирует правило Ленца на примере неподвижного проводящего контура, который находится в однородном магнитном поле, модуль индукции которого увеличивается во времени.

2

Рисунок 4.20.2. Иллюстрация правила Ленца. В этом примере а инд обхода контура.

Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии. Ценность этого теоретического вклада Ленца состоит еще и в том, что он впервые установил связь между электромагнитными и электродинамическими явлениями. В этой работе Ленца говорилось: «работа перемещения первого проводника превращается в электрическую энергию во втором проводнике». Эти слова не что иное, как формулировка в применении к электричеству принципа сохранения энергии и превращения одного ее вида в другой.

3 Вихревое электрическое поле.

. Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  1. Магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле. Возникновение ЭДС индукции объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

  2. Вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике. Следовательно, электрическое поле, порожденное изменяющимся магнитным полем, не является потенциальным.

Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом (1861 г.). Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея


   Работа сил вихревого электрического поля по перемещению электрических зарядов и является работой сторонних сил, источником ЭДС индукции.

   Вихревое электрическое поле отличается от электростатического поля тем, что оно не связано с электрическими зарядами, его линии напряженности представляют собой замкнутые линии. Работа сил вихревого электрического поля при движении электрического заряда по замкнутой линии может быть отлична от нуля.

4 Роль магнитных полей в явлениях, происходящих на Солнце.»

 

Магнитное поле по современным представлениям формируется внутри Солнца в его конвективной зоне, расположенной непосредственно под солнечной поверхностью (фотосферой). Роль магнитного поля в динамике происходящих на Солнце процессов - огромна. Судя по всему, оно является ключом ко всем активным явлениям, происходящим в солнечной атмосфере, в том числе к солнечным вспышкам. Можно сказать, что если бы Солнце не обладало магнитным полем, то оно было бы крайне скучной звездой.

Многие объекты, наблюдаемые на Солнце, также обязаны своим происхождением магнитному полю. Так, например, солнечные пятна представляют собой места, где гигантские магнитные петли, всплывающие из недр Солнца, проникают сквозь солнечную поверхность. Именно по этой причине группы пятен, как правило, состоят из двух областей различной магнитной полярности - северной и южной. Эти две области соответствуют противоположным основаниям всплывающей магнитной трубки. Цикл солнечной активности также является результатом циклических изменений магнитного поля, происходящих в солнечных недрах. Протуберанцы, которые как бы парят в пустоте над поверхностью Солнца, в действительности поддерживаются линиями магнитного поля, которыми они пронизаны. Наконец, многие объекты, наблюдаемые в короне, в частности стримеры и петли, просто повторяют своей формой топологию окружающих их магнитных полей.

Измерения магнитных полей

Магнитное поле влияет на движение попадающих в него заряженных частиц. По этой причине входящие в состав любого атома электроны, вращающиеся вокруг ядра в одном направлении, попав в магнитное поле увеличат свою энергию, в то время как электроны, вращающиеся в другом направлении, свою энергию уменьшат. Этот эффект (эффект Зеемана) приводит к расщеплению линий излучения атома на несколько компонент. Измерение этого расщепления позволяет определять величину и направление магнитного поля на удаленных от нас объектах, недоступных для прямого исследования, таких как Солнце. Современные методы измерения позволяют с высокой точностью определять поле на поверхности Солнца, однако часто бессильны при измерении трехмерного поля в солнечной короне. В этом случае для  восстановления полной трехмерной картины поля по поверхностным измерениям используются особые математические методы.

Предсказание космической погоды

Понимание природы солнечного магнитного поля и его поведения позволит делать более надежные предсказания космической погоды. В настоящее время известны некоторые косвенные признаки, указывающие на то, что в активной области может произойти вспышка. Однако более долгосрочные предсказания, такие, например, как предсказание продолжительности будущего солнечного цикла, все еще являются чрезвычайно неточными и основываются не на строгих физических моделях, а на поиске разного рода эмпирических зависимостей. Тем не менее мы надеемся, что в скором будущем мы сможем понять Солнце достаточно хорошо, чтобы моделировать его будущую активность и предсказывать космическую погоду так же, как сейчас предсказывается погода на Земле.

5 Задачи на закрепление изученной темы.




  1. Знаменитый английский физик М. Фарадей в 1831 году открыл явление электромагнитной индукции. Фарадей долго и тщательно искал это явление, руководствуясь общей идеей о связи электрических и магнитных явлений.

Одновременно с Фарадеем и независимо от него в этом же направлении работал швейцарский физик Колладон, руководствуясь той же идеей. Опыт Колладона состоял в следующем: концы соленоида соединялись с гальванометром, который для устранения непосредственного влияния магнита был вынесен в соседнюю комнату, Колладон вдвигал магнит в соленоид и шёл в соседнюю комнату смотреть, что показывает гальванометр. В чём была ошибка Колладона? Почему ему не удалось открыть явление электромагнитной индукции?

2. Три одинаковых полосовых магнита падают в вертикальном положении одновременно с одной высоты (рисунок 1). Первый падает свободно, второй во время падения проходит сквозь незамкнутое кольцо, третий – сквозь замкнутое кольцо. Сравните время падения магнитов. Ответы обоснуйте на основании правила Ленца и закона сохранения энергии.

3 Определите направление индукционного тока в замкнутом проводящем контуре, находящемся в однородном магнитном поле с индукцией , одна из сторон которого может скользить без нарушения электрического контакта с остальными. Магнитное поле перпендикулярно плоскости рамки. Рассмотрите случаи: 1) перекладина движется вправо в магнитном поле, направленном за плоскость рисунка; 2) перекладина движется влево.

4 При каком направлении движения контура в магнитном поле в контуре будет возникать индукционный ток?

5 Укажите направление индукционного тока в контуре при введении его в однородное магнитное поле.

6 Как изменится магнитный поток в рамке, если рамку повернуть на 90 градусов из положения 1 в положение 2 ?

7 Будет ли возникать индукционный ток в проводниках, если они движутся так, как показано на рисунке?

8 Определить направление индукционного тока в проводнике АБ, движущемся в однородном магнитном поле.

9 Указать правильное направление индукционного тока в контурах.













Просмотр содержимого документа
«2 Напряжённость »

Урок №2/4

Тема №2: «Напряжённость электрического поля. Графическое изображение электрического поля. Принцип суперпозиции полей. Однородное электрическое поле.»

I Тест на проверку качества усвоения предыдущей темы ( в приложении – ТС-25).

II Объяснение новой темы.

1 Напряжённость электрического поля.

Рассмотрим электростатическое поле, созданное точечным положительным зарядом Q. Это поле в любой точке можно характеризовать силой, действующей на пробный заряд q, помещённый в эту точку.

Пробный заряд должен быть настолько мал, чтобы его внесение в исследуемое поле не изменяло поле, т.е. не вызывало перераспределение заряда Q. Пробный заряд выбирают положительным по знаку.

По закону Кулона сила отталкивания, действующая на пробный заряд +q, равна

Fq = kQq/r2 (3)

Как видно, сила Fq зависит не только от заряда +Q, но и от пробного заряда q. Это неудобно для характеристики поля, созданного зарядом Q. Отношение силы, действующей на пробный заряд q, к величине этого заряда не зависит от его величины.

Напряжённость электростатического поля – векторная физическая величина, равная отношению силы Кулона, с которой поле действует на пробный положительный заряд, помещённый в данную точку поля, к величине этого заряда:

E = Fq/q (4)

Напряжённость поля – силовая характеристика электростатического поля.

С учётом формулы (3) напряжённость поля, созданного точечным положительным зарядом Q, в точке, находящейся на расстоянии r от него, равна

E = kQ/r2 (5)

Напряжённость электростатического поля в данной точке пространства численно равна силе Кулона, с которой поле действует на пробный единичный положительный заряд, помещённый в этой точке.

[E] =1 Н/Кл

Направление вектора напряжённости совпадает с направлением силы Кулона, действующей на единичный положительный заряд, помещённый в данную точку поля и противоположна направлению силы, действующей на единичный отрицательный заряд (рис.2).

Зная напряжённость поля в какой – либо точке пространства, можно найти силу, действующую на заряд q, помещённый в эту точку:

Fq = Eq (6)


Рис.2

2 Графическое изображение электрического поля. Однородное электрическое поле.

Для того, чтобы составить представление о распределении электростатического поля в пространстве, можно показать векторы напряжённости в некоторых точках.

Для большей наглядности электростатическое поле представляют непрерывными линиями напряжённости (рис.3).

Рис.3



Рис.4


Рис.5а


Рис.5б


Рис.6

Линии напряжённости – линии, касательные к которым в каждой точке поля совпадают с направлением вектора напряжённости электростатического поля в данной точке.

Линии напряжённости поля не пересекаются (в противном случае напряжённость не имела бы определённого направления в данной точке).

Линии напряжённости поля, созданного точечным положительным зарядом, направлены радиально от заряда, т.к. пробный заряд в любой точке отталкивается от него. Положительный заряд является источником линий напряжённости (рис.4)

Линии напряжённости поля, созданного точечным отрицательным зарядом, направлены радиально к заряду, т.к. пробный заряд в любой точке притягивается к нему. Отрицательный заряд является стоком линий напряжённости.

Модуль напряжённости поля пропорционален степени сгущения линий напряжённости электростатического поля (рис.5).

Электрическое поле, векторы напряжённости которого одинаковы во всех точках пространства, называется однородным.

3 Принцип суперпозиции полей.

Силы, действующие на единичный положительный заряд в данной точке со стороны других зарядов, не зависят друг от друга. Согласно принципу суперпозиции сил, результирующая сила, действующая, например, на единичный положительный заряд, равна векторной сумме сил, с которыми на него действует каждый заряд. Учитывая определение напряжённости поля, можно сформулировать принцип суперпозиции электростатических полей:

Напряжённость поля системы зарядов в данной точке равна геометрической (векторной) сумме напряжённостей полей, созданных в этой точке каждым зарядом в отдельности:

Е = Е1 + Е2 + … + Еn (7)

Принцип суперпозиции позволяет рассчитать напряжённость поля, созданного произвольной системой зарядов.

Рис.7

Рис.8

IV Решение задач на закрепление изученной темы.

1 Напряжённость поля в точке А направлена на восток и равна 2∙105 Н/Кл. Какая сила и в каком направлении будет действовать -3 мкКл?

2 Определите напряжённость поля, созданного протоном на расстоянии 5,3∙10-11 м от него. Какая сила действует на электрон, находящийся в этой точке?

3 Определите ускорение электрона в точке В, если напряжённость поля в этой точке равна 1,3∙1011 Н/Кл.

4 На точечный заряд q = 2мкКл действует сила F = 9 Н со стороны другого точечного заряда Q. Найдите напряжённость электростатического поля, созданного зарядом Q, в точке, находящейся посередине расстояния между зарядами Q и q.

5 Два одинаковых точечных положительных заряда q = 10 мкКл находятся на расстоянии L = 12 см один от другого. Найдите напряжённость поля в точке А, находящейся посередине расстояния между зарядами. Определите напряжённость поля, созданного зарядами, в точке В, лежащей на перпендикуляре, восставленном из точки А, если АВ = х = 8 см.






Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!