СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Технология производства неорганических веществ. Раздел «Технология урана»

Категория: Прочее

Нажмите, чтобы узнать подробности

Лекция на тему "Травление, оксидирование, анодирование"

Просмотр содержимого документа
«Технология производства неорганических веществ. Раздел «Технология урана»»

Травление, оксидирование, анодирование

Химическое травление

Травление—группа технологических приёмов для управляемого удаления поверхностного слоя материала под действием химических веществ.

Ряд способов травления предусматривает активацию травящих реагентов посредством других физических явлений, например, наложением внешнего электрического поля при электрохимическом травлении, ионизацией атомов и молекул реагентов при ионно-плазменном травлении и тому подобное.

При использовании термина «травление» без дополнительного определения, как правило, подразумевается химическое травление в водном электролите.

Если часть поверхности, подвергаемой травлению, требуется сохранить, то она защищается (химически или механически) путём наложения специальной маски.

Основные виды травления:

- жидкостное (химически активными растворами);

- электрохимическое;

- сухое (физическое распыление, ионное распыление; газофазное химическое травление; реактивное ионное травление).

Процесс травления разделяется на следующие шаги:

- подготовку поверхности (например, механические шлифовка и полировка, обезжиривание);

- взаимодействие травителя или электролита (растворы кислот, растворы и расплавы солей и щелочей, другие органические и неорганические жидкости, плазма) с обрабатываемым материалом;

- очистку поверхности от травителя и продуктов травления (как правило, это отмывка каким-либо растворителем).

Процесс травления может сопровождаться газовыделением. В частности, кислотное травление металлов часто сопровождается выделением водорода, что требует применения особых мер безопасности.

Хотя в процессе травления обрабатывается только поверхность, при длительном травлении начинает стравливаться и материал под маской вблизи её краёв, что может привести к порче объекта травления.

Процесс травления имеет склонность к селективности (избирательности). Избирательность травления основана на различии скоростей химической реакции на разных участках протравливаемой поверхности.

В частности, повышенной скоростью травления характеризуются участки поверхности, имеющие макро- и микродефекты, такие как трещины, царапины, дислокации, вакансии, примесные атомы в кристаллической решётке и другие.

К примеру, в поликристаллическом материале скорость травления межкристаллитных границ, выходящих на поверхность выше, чем скорость травления поверхности самих кристаллитов.

На селективность травления также влияет анизотропия свойств монокристаллов, то есть разные грани кристалла травятся с различной скоростью: это различие используется для проявления дефектов кристаллической решётки монокристалла, при этом дефекты атомного масштаба провоцируют появление ямок травления характерной (из-за анизотропии кристалла - зависимости результата травления от направления) формы микронного масштаба. Полученные ямки травления могут быть оценены как качественно, так и количественно с использованием обычного оптического микроскопа. При большой концентрации дефектов в протравленной области невооружённым глазом хорошо различимы матовость и рябь.

В ряде случаев склонность процесса травления к селективности играет негативную роль и должна быть максимально снижена.

Неселективное (точнее слабоселективное) травление называют полирующим.

При полирующем травлении, как правило, 2-й шаг травления происходит намного быстрее 3-го шага, вследствие чего большая часть материала поверхности успевает прореагировать и временно пассивироваться, прежде чем пассивирующие продукты травления освободят поверхность для следующего элементарного акта химической реакции. Превращение механизма травления в полирующее может быть достигнуто либо соответствующим подбором реагентов, либо изменением их концентрации, либо подбором температурных условий реакции, либо комбинированием этих способов.

Травители используются в химическом и электрохимическом травлении. Травители для электрохимического травления в отсутствие электрического тока могут вообще не воздействовать на материал, либо их воздействие может отличаться от воздействия при протекании электрического тока.

Различают травители однокомпонентные и многокомпонентные.

Компоненты многокомпонентных травителей выполняют в травителе
3 основных роли:

- модификация поверхности обрабатываемого материала (например, окисление поверхности);

- растворение модифицированного материала (например, растворение образовавшегося окисла);

- управление процессом травления (например, увеличение или уменьшение скорости стравливания, усиление или ослабление степени селективности
травления и т. п.).

Различают травители селективные и неселективные.

Степень селективности травителя также может быть различной.

Некоторые из селективных травителей могут быть полирующими.

Травление применяется:

- для снятия поверхностного слоя загрязнений, окислов, жировой плёнки и т.п. (например, окалины с полуфабриката в металлургии);

- для выявления структуры материалов (например, структуры металлов и сплавов при металлографии);

- для нанесения рельефного рисунка при художественной обработке материалов (обычно металлов);

- для формирования проводящих дорожек и контактных площадок при производстве печатных плат;

- для формирования проводящих дорожек, контактных площадок и окон в слоях окисла для диффузии при изготовлении интегральных схем методом фотолитографии;

- для изготовления мембран (вытравливание сверхмалых отверстий с применением метода фотолитографии);

- для химической полировки поверхности и удаления нарушенного в ходе предшествующей механической обработки слоя.

Оксидирование

Оксидирование—процесс формирования оксидных пленок на поверхности металла. Оксидирование применяется для нанесения оксидных слоев, как в целях защиты, так и для придания металлическому изделию декоративных свойств.

Оксидирование металла можно проводить несколькими способами:

- химическое оксидирование;

- термическое оксидирование;

- анодное оксидирование (электрохимическое);

- пламенные методы (микродуговое оксидирование и другие).

Химическое оксидирование осуществляют обработкой изделия в растворах (расплавах) окислителей (хроматы, нитраты и др.).

С помощью данного метода поверхность изделия пассивируют либо нанося защитные и декоративные слои.

Для кислотного оксидирования используют, в основном, смесь нескольких кислот, например, азотная (или ортофосфорная) и соляная кислоты с некоторыми добавками (Ca(NO3)2, соединения Mn).

Щелочное оксидирование проводится при температурах около 30–180°С. В состав вводят окислители. После нанесения оксидного слоя металлические изделия хорошо промываются и сушатся. Иногда готовое покрытие промасливают или дополнительно обрабатывают в окислительных растворах.

Защитные слои, полученные с применением химического оксидирования, обладают менее защитными свойствами, чем пленки, полученные анодированием.

Термическое оксидирование - процесс образования оксидной пленки на металле при повышенных температурах и в кислородсодержащих (может быть водяной пар) атмосферах. Термическое оксидирование проводят в нагревательных печах. При термическом оксидировании низколегированных сталей либо железа (операция называется воронение) температуру поднимают до 300–350°С. Для легированных сталей термическое оксидирование проводится при более высоких температурах (до 700°С). Продолжительность процесса - около 60 минут. Очень часто термическое оксидирование применяют для создания оксидного слоя на поверхности изделий из кремния.

Такой процесс проводится при высоких температурах (800–1200°С). Применяются оксидированные кремниевые изделия в электронике.

Анодирование - один из способов получения оксидной пленки. Анодирование проводят в жидких либо твердых электролитах. При анодировании поверхность металла, который окисляется, имеет положительный потенциал. Анодирование применяют для получения защитных и декоративных слоев на поверхностях различных металлов и сплавов.

Анодирование наиболее часто применяют для получения покрытия на алюминии и его сплавах. На алюминии получают слои с защитными, изоляционными, износостойкими, декоративными свойствами.

Плазменные методы нанесения оксидных слоев.

Плазменное оксидирование проводят при низких температурах в плазме, которая содержит кислород. Плазма для данного вида оксидирования образуется при помощи разрядов постоянного тока, СВЧ, ВЧ разрядов.

Плазменное оксидирование применяют для получения оксидных слоев на различных полупроводниковых соединениях, поверхности кремния. Плазменным оксидированием можно повысить светочувствительность серебряно-цезиевых фотокатодов.

Микродуговое оксидирование (МДО) - метод получения многофункциональных оксидных слоев. Микродуговое оксидирование - походная от анодирования. Позволяет наносить слои с высокими защитными, коррозионными, теплостойкими, изоляционными, декоративными свойствами. По внешнему виду покрытие, полученное микродуговым способом, очень напоминает керамику.

Сейчас это один из самых перспективных и востребованных способов нанесения оксидных слоев, т. к. позволяет наносить сверхпрочные покрытия с уникальными характеристиками.

Процесс микродугового оксидирования ведется, в большинстве случаев, в слабощелочных электролитах при подаче импульсного либо переменного тока. Перед нанесением покрытия не требуется особой подготовки поверхности. Особенностью процесса является то, что используется энергия от электрических микроразрядов, которые хаотично передвигаются по обрабатываемой поверхности. Эти микроразряды оказывают на покрытие и электролит плазмохимическое и термическое воздействие. Оксидный слой приблизительно на 70 % формируется вглубь основного металла. Только 30 % покрытия находится полностью снаружи изделия.

Толщина покрытий, полученных микродуговым способом, составляет около 200–250 мкм (достаточно толстое). Температура электролита может колебаться от 15 до 400°С, и это не оказывает на процесс особого влияния.

Применяемые электролиты не оказывают вредного влияния на окружающую среду и их срок службы очень долгий.

Оборудование - компактное, не занимает много места и просто в эксплуатации.

Рассеивающая способность используемых электролитов высока, что позволяет получать покрытия даже на сложнорельефных деталях.

Микродуговое оксидирование применяется для формирования покрытий в основном на магниевых и алюминиевых сплавах.

Оксидирование алюминия и алюминиевых сплавов.

Для эффективной защиты алюминия от коррозии наилучшим способом является создание на его поверхности оксидных слоев. Для этого применяют химическое, электрохимическое либо микродуговое оксидирование.

Анодирование (анодное оксидирование) алюминия.

Покрытие может применяться как самостоятельная защита от атмосферной коррозии алюминия и его сплавов, или же, как основа под покраску. Оксидная пленка легок растворима в щелочах, но обладает достаточно высокой стойкостью в некоторым минеральным кислотам и воде.

Состав защитного слоя на алюминии: аморфный оксид алюминия, кристаллическая γ - модификация Al2O3.

Твердость оксидного слоя: на техническом алюминии - порядка
5000 - 6000 МПа, на сплавах алюминиевых от 2000 до 5000 МПа.

Слои, полученные методом оксидировании, отличаются хорошими электроизоляционными свойствами. Удельное электросопротивление составляет 1014–1015 Ом·м.

Анодированием можно получать на алюминии слои с различными заранее заданными свойствами. Можно получать твердые и мягкие защитные слои, безпористые, пористые, эластичные, хрупкие. Различные свойства получают при варьировании составом электролита и режимами электролиза.

При оксидировании алюминия в нейтральных или кислых электролитах (в большинстве растворов) поверхность алюминия почти моментально покрывается толстым слоем оксидов.

При электрохимическом оксидировании сначала образуется тонкий слой окислов, а потом кислород, проникает сквозь этот слой, упрочняя и утолщая его. Окисный слой достигает толщины около 0,01–0,1 мкм и прекращает свой рост. Этот слой называется барьерным. Для продолжения роста окислов необходимо увеличить напряжение на ванне.

Некоторые электролиты способны растворять оксид алюминия. Если электролит не растворяет оксидную пленку - она достигает толщины, отвечающей заданному напряжению. Это около 1–2 мкм. Такие пленки используются при производстве электрических конденсаторов, т. к. они не имеют пор, обладают хорошими электроизоляционными свойствами.

При использовании электролитов, способных растворять оксидный слой, утолщение пленки зависит от двух процессов, которые протекают на аноде:

- растворения пленки под воздействием электролита;

- электрохимического окисления металла у основания пор.

Если скорость окисления алюминия выше скорости растворения окислов, то происходит утолщение окисного слоя. В начале процесса оксидирования скорость окисления больше, скорости растворения, но с течением процесса увеличивается скорость растворения оксидов. Рост пленки прекращается, когда эти две скорости уравниваются.

Толщина оксидной пленки, полученной при анодировании алюминия, зависит от растворяющей способности электролита, которая, в свою очередь, определяется концентрацией кислоты, температурой и другими факторами.

Толщина оксидного покрытия зависит также от состава алюминия и его сплавов. Химически чистый алюминий легче анодировать, чем его сплавы.
С увеличение в составе сплава различных добавок труднее получить пленки с хорошими характеристиками. На алюминиевых сплавах, содержащих марганец, медь, железо, магний, покрытие получается шероховатым, неровным. Это объясняется высокой скоростью растворения интерметаллических соединений, в виде которых эти металлы присутствуют в алюминиевом сплаве.

Оксидные пленки на алюминии, полученные методом анодирования, состоят из двух слоев: первый слой, на границе с металлом, беспористый барьерный в толщину от 0,01 до 0,1 мкм; второй слой пористый и достаточно толстый (от 1 мкм до нескольких сотен мкм.). Рост окисного слоя происходит за счет утолщения внешнего слоя.

Химическое оксидирование алюминия - самый доступный, дешевый и простой способ получить оксидные пленки на алюминии и его сплавах. Метод химического оксидирования не требует подвода электрического тока. Процесс проводится в растворах хроматов и позволяет оксидировать большое количество деталей одновременно. По качеству полученные пленки уступают слоям, полученным методами, с использованием тока. Толщина оксидных слоев – около
2 - 3 мкм.

В связи с невысокими защитными свойствами окисных слоев, полученных химическим оксидированием, метод не нашел широкого применения (используется довольно редко).

Очень важно при химическом оксидировании алюминия и его сплавов постоянно контролировать температуру и состав электролита. При уменьшении концентрации щелочи в растворе для химического оксидирования - пленки получаются тонкие, а при увеличении и высокой температуре раствора - имеют рыхлую структуру.

Конечная обработка анодно-окисных слоев.

Очень часто полученные защитные оксидные пленки подвергаются дополнительной обработке: окрашивание, уплотнение.

Уплотнение анодно-оксидных пленок на алюминии применяют для придания окисным слоям светостойкости, высокой коррозионной стойкости и повышения диэлектрических свойств. Процесс уплотнения основан на способности оксидных слоев впитывать влагу. Во время уплотнения часть оксидов превращается в гидроксиды, которые заполняют полые поры, тем самым уплотняя пленку. На производствах очень часто применяют для уплотнения горячую воду (температура порядка 100 °С). Качество уплотненных окисных слоев зависит от продолжительности обработки, температуры, характеристик самой пленки. Для того чтоб ускорить процесс, в воду добавляют ПАВ и соли. Полученная пленка может быть от светло-серого до темно-серого цвета.

Еще один способ уплотнения оксидных слоев на алюминии - обработка в растворе бихромата калия (около 40 г/л) при температуре 90–95°С. Продолжительность - 20–25 минут. На вид пленка зеленого цвета (светлый или с желтоватым отливом).

Защитные свойства оксидных слоев, уплотненных различными способами, примерно одинаковы.



4



Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!