СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Операции с комплексными числами на инженерных калькуляторах

Категория: Математика

Нажмите, чтобы узнать подробности

Операции с комплексными числами на инженерных калькуляторах

Комплексное число — это выражение вида a + bi, где ab — действительные числа, а i — так называемая мнимая единица, символ, квадрат которого равен –1, то есть i2 = –1.

Число a называется действительной частью, а число b — мнимой частьюкомплексного числа z = a + bi. Если b = 0, то вместо a + 0i пишут просто a. Видно, что действительные числа — это частный случай комплексных чисел.

Формы

Так сложилось в математике, что у данных чисел несколько форм. Число одно и тоже, но записать его можно по-разному:

  1. Алгебраическая z=a+ib\displaystyle z = a+ibz=a+ib
  2. Показательная z=∣z∣eiφ\displaystyle z = |z|e^{i\varphi}z=∣zeiφ
  3. Тригонометрическая z=∣z∣⋅(cos(φ)+isin(φ))\displaystyle z = |z|\cdot(\cos(\varphi)+i\sin(\varphi))z=∣z∣⋅(cos(φ)+isin(φ))

Арифметические действия над комплексными числами те же, что и над действительными: их можно складывать, вычитать, умножать и делить друг на друга. Сложение и вычитание происходят по правилу (a + bi) ± (c + di) = (a ± c) + (b ± d)i, а умножение — по правилу (a + bi) · (c + di) = (ac – bd) + (ad + bc)i (здесь как раз используется, что i2 = –1). Число  = a – bi называется комплексно-сопряженным к z = a + bi.

Равенство z ·  = a2 + b2 позволяет понять, как делить одно комплексное число на другое (ненулевое) комплексное число:

.

(Например, .)

У комплексных чисел есть удобное и наглядное геометрическое представление: число z = a + bi можно изображать вектором с координатами (ab) на декартовой плоскости (или, что почти то же самое, точкой — концом вектора с этими координатами). При этом сумма двух комплексных чисел изображается как сумма соответствующих векторов (которую можно найти по правилу параллелограмма).

По теореме Пифагора длина вектора с координатами (ab) равна . Эта величина называется модулем комплексного числа z = a + bi и обозначается |z|.

Угол, который этот вектор образует с положительным направлением оси абсцисс (отсчитанный против часовой стрелки), называется аргументом комплексного числа z и обозначается Arg z. Аргумент определен не однозначно, а лишь с точностью до прибавления величины, кратной 2πрадиан (или 360°, если считать в градусах) — ведь ясно, что поворот на такой угол вокруг начала координат не изменит вектор. Но если вектор длины r образует угол φс положительным направлением оси абсцисс, то его координаты равны (r · cos φr · sin φ).

Отсюда получается тригонометрическая форма записи комплексного числа: z = |z| · (cos(Arg z) + i sin(Arg z)). Часто бывает удобно записывать комплексные числа именно в такой форме, потому что это сильно упрощает выкладки. Умножение комплексных чисел в тригонометрической форме выглядит очень просто: z1 · z2 = |z1| · |z2| · (cos(Arg z1 + Arg z2) + i sin(Arg z1 + Arg z2)) (при умножении двух комплексных чисел их модули перемножаются, а аргументы складываются). Отсюда следуют формулы Муавраzn = |z|n · (cos(n · (Arg z)) + i sin(n · (Arg z))). С помощью этих формул легко научиться извлекать корни любой степени  из комплексных чисел. Корень n-й степени из числа z — это такое комплексное число w, что wn = z. Видно, что , а , где k может принимать любое значение из множества {0, 1, ..., n – 1}. Это означает, что всегда есть ровно n корней n-й степени из комплексного числа (на плоскости они располагаются в вершинах правильного n-угольника).

 

 


Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!