СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Метод Гаусса и Крамера

Категория: Математика

Нажмите, чтобы узнать подробности

В данной работе представлены: определение метода Гаусса и Крамера; мини биография (годы жизни) Иоганн Карл Фридрих Гаусс, Габриэль Крамер; примеры и их решения.

Просмотр содержимого документа
«Метод Гаусса и Крамера»

Матрицы Метод Гаусса Формулы Крамера

Матрицы

Метод Гаусса

Формулы Крамера

Матрица  Определение Прямоугольная таблица из m , n чисел, содержащая m – строк и n – столбцов, вида: называется матрицей размера m  n Числа, из которых составлена матрица, называются элементами матрицы. Положение элемента а i j  в матрице характеризуются двойным индексом:  первый i – номер строки;  второй j – номер столбца, на пересечении которых стоит элемент.   Сокращенно матрицы обозначают заглавными буквами: А, В, С… Коротко можно записывать так:

Матрица Определение

Прямоугольная таблица из m , n чисел, содержащая m – строк и n – столбцов, вида:

называется матрицей размера m n

Числа, из которых составлена матрица, называются элементами матрицы.

Положение элемента а i j в матрице характеризуются двойным индексом:

первый i – номер строки;

второй j – номер столбца, на пересечении которых стоит элемент.

  Сокращенно матрицы обозначают заглавными буквами: А, В, С…

Коротко можно записывать так:

Иоганн Карл Фридрих Гаусс   (30 апреля 1777, Брауншвейг —  23 февраля 1855, Гёттинген)

Иоганн Карл Фридрих Гаусс (30 апреля 1777, Брауншвейг — 23 февраля 1855, Гёттинген)

Метод  Гаусса Метод Гаусса — классический метод решения системы линейных алгебраических уравнений. Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которого последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные. Система т линейных уравнений с п неизвестными имеет вид: x 1 , x 2 , …, x n – неизвестные. a i j - коэффициенты при неизвестных. b i - свободные члены (или правые части)

Метод Гаусса

Метод Гаусса — классический метод решения системы линейных алгебраических уравнений. Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которого последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные.

Система т линейных уравнений с п неизвестными имеет вид:

x 1 , x 2 , …, x n – неизвестные.

a i j - коэффициенты при неизвестных.

b i - свободные члены (или правые части)

Типы уравнений Система линейных уравнений называется совместной , если она имеет решение, и несовместной , если она не имеет решения. Совместная система называется определенной , если она имеет единственное решение и неопределенной , если она имеет бесчисленное множество решений. Две совместные системы называются равносильными , если они имеют одно и то же множество решений.

Типы уравнений

Система линейных уравнений называется совместной , если она имеет решение, и несовместной , если она не имеет решения.

Совместная система называется определенной , если она имеет единственное решение и неопределенной , если она имеет бесчисленное множество решений.

Две совместные системы называются равносильными , если они имеют одно и то же множество решений.

Элементарные преобразования К элементарным преобразованиям системы отнесем следующее: перемена местами двух любых уравнений; умножение обеих частей любого из уравнений на произвольное число, отличное от нуля; прибавление к обеим частям одного из уравнений системы соответствующих частей другого уравнения, умноженных на любое действительное число.

Элементарные преобразования

К элементарным преобразованиям системы отнесем следующее:

  • перемена местами двух любых уравнений;
  • умножение обеих частей любого из уравнений на произвольное число, отличное от нуля;
  • прибавление к обеим частям одного из уравнений системы соответствующих частей другого уравнения, умноженных на любое действительное число.
Общий случай Для простоты рассмотрим метод Гаусса для системы трех линейных уравнений с тремя неизвестными в случае, когда существует единственное решение: Дана система: 1-ый шаг метода Гаусса На первом шаге исключим неизвестное х 1 из всех уравнений системы (1), кроме первого. Пусть коэффициент . Назовем его ведущим элементом. Разделим первое уравнение системы (1) на а 11 . Получим уравнение: где Исключим х 1 из второго и третьего уравнений системы (1). Для этого вычтем из них уравнение (2), умноженное на коэффициент при х 1 (соответственно а 21 и а 31 ). Система примет вид: Верхний индекс (1) указывает, что речь идет о коэффициентах первой преобразованной системы. (1) (2) (3)

Общий случай

Для простоты рассмотрим метод Гаусса для системы трех линейных уравнений с тремя неизвестными в случае, когда существует единственное решение:

Дана система:

1-ый шаг метода Гаусса

На первом шаге исключим неизвестное х 1 из всех уравнений системы (1), кроме первого. Пусть коэффициент . Назовем его ведущим элементом. Разделим первое уравнение системы (1) на а 11 . Получим уравнение:

где

Исключим х 1 из второго и третьего уравнений системы (1). Для этого вычтем из них уравнение (2), умноженное на коэффициент при х 1 (соответственно а 21 и а 31 ).

Система примет вид:

Верхний индекс (1) указывает, что речь идет о коэффициентах первой преобразованной системы.

(1)

(2)

(3)

2-ой шаг метода Гаусса На втором шаге исключим неизвестное х 2  из третьего уравнения системы (3) . Пусть коэффициент . Выберем его за ведущий элемент и разделим на него второе уравнение системы (3) , получим уравнение: где Из третьего уравнения системы (3) вычтем уравнение (4), умноженное на Получим уравнение: Предполагая, что  находим (4)

2-ой шаг метода Гаусса

На втором шаге исключим неизвестное х 2 из третьего уравнения системы (3) . Пусть коэффициент . Выберем его за ведущий элемент и разделим на него второе уравнение системы (3) , получим уравнение:

где

Из третьего уравнения системы (3) вычтем уравнение (4), умноженное на Получим уравнение:

Предполагая, что находим

(4)

В результате преобразований система приняла вид: Система вида (5) называется треугольной . Процесс приведения системы (1) к треугольному виду (5) (шаги 1 и 2 ) называют прямым ходом метода Гаусса . Нахождение неизвестных из треугольной системы называют обратным ходом метода Гаусса. Для этого найденное значение х 3 подставляют во второе уравнение системы (5) и находят х 2 . Затем х 2 и х 3 подставляют в первое уравнение и находят х 1 . (5)

В результате преобразований система приняла вид:

Система вида (5) называется треугольной .

Процесс приведения системы (1) к треугольному виду (5) (шаги 1 и 2 ) называют прямым ходом метода Гаусса .

Нахождение неизвестных из треугольной системы называют обратным ходом метода Гаусса.

Для этого найденное значение х 3 подставляют во второе уравнение системы (5) и находят х 2 . Затем х 2 и х 3 подставляют в первое уравнение и находят х 1 .

(5)

Если в ходе преобразований системы получается противоречивое уравнение вида 0 = b , где b   0, то это означает, что система несовместна и решений не имеет. В случае совместной системы после преобразований по методу Гаусса, составляющих прямой ход метода, система т линейных уравнений с п неизвестными будет приведена или к треугольному или к ступенчатому виду. Треугольная система имеет вид: Такая система имеет единственное решение, которое находится в результате проведения обратного хода метода Гаусса. Ступенчатая система имеет вид: Такая система имеет бесчисленное  множество решений.

Если в ходе преобразований системы получается противоречивое уравнение вида 0 = b , где b  0, то это означает, что система несовместна и решений не имеет.

В случае совместной системы после преобразований по методу Гаусса, составляющих прямой ход метода, система т линейных уравнений с п неизвестными будет приведена или к треугольному или к ступенчатому виду.

Треугольная система имеет вид:

Такая система имеет единственное

решение, которое находится в

результате проведения обратного хода метода Гаусса.

Ступенчатая система имеет вид:

Такая система имеет бесчисленное

множество решений.

Рассмотрим на примере Покажем последовательность решения системы из трех уравнений методом Гаусса Поделим первое уравнение на 2, затем вычтем его из второго (a 21 =1, поэтому домножение не требуется) и из третьего, умножив предварительно на a 31 =3 Поделим второе уравнение полученной системы на 2, а затем вычтем его из третьего, умножив предварительно на 4,5 (коэффициент при x 2 ) Тогда x 3 =-42/(-14)=3; x 2 =8-2x3=2 x 1 =8-0,5x2-2x3=1

Рассмотрим на примере

  • Покажем последовательность решения системы из трех уравнений методом Гаусса
  • Поделим первое уравнение на 2, затем вычтем его из второго (a 21 =1, поэтому домножение не требуется) и из третьего, умножив предварительно на a 31 =3
  • Поделим второе уравнение полученной системы на 2, а затем вычтем его из третьего, умножив предварительно на 4,5 (коэффициент при x 2 )

Тогда

x 3 =-42/(-14)=3;

x 2 =8-2x3=2

x 1 =8-0,5x2-2x3=1

Метод Крамера Метод Крамера—способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы. Создан Габриэлем Крамером в 1751 году.

Метод Крамера

Метод Крамера—способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы. Создан Габриэлем Крамером в 1751 году.

Габриэль Крамер  (31 июля 1704, Женева, Швейцария—4 января 1752, Баньоль-сюр-Сез, Франция)

Габриэль Крамер (31 июля 1704, Женева, Швейцария—4 января 1752, Баньоль-сюр-Сез, Франция)

Рассмотрим систему линейных уравнений с квадратной матрицей A , т.е. такую, у которой число уравнений совпадает с числом неизвестных:   Теорема. Cистема  a 11 x 1 +a 12 x 2 +…+a 1n x n =b 1 a 21 x 1 +a 22 x 2 +…+a 2n x n =b 2  …   … a n1 x 1 +a n2 x 2 +…+a nn x n =b n a 11 x 1 +a 12 x 2 +…+a 1n x n =b 1 a 21 x 1 +a 22 x 2 +…+a 2n x n =b 2  …   … a n1 x 1 +a n2 x 2 +…+a nn x n =b n  a 11 x 1 +a 12 x 2 +…+a 1n x n =b 1 a 21 x 1 +a 22 x 2 +…+a 2n x n =b 2  …   … a n1 x 1 +a n2 x 2 +…+a nn x n =b n  a 11 x 1 +a 12 x 2 +…+a 1n x n =b 1 a 21 x 1 +a 22 x 2 +…+a 2n x n =b 2  …   … a n1 x 1 +a n2 x 2 +…+a nn x n =b n

Рассмотрим систему линейных уравнений с квадратной матрицей A , т.е. такую, у которой число уравнений совпадает с числом неизвестных:

Теорема. Cистема

a 11 x 1 +a 12 x 2 +…+a 1n x n =b 1

a 21 x 1 +a 22 x 2 +…+a 2n x n =b 2

… …

a n1 x 1 +a n2 x 2 +…+a nn x n =b n

  • a 11 x 1 +a 12 x 2 +…+a 1n x n =b 1 a 21 x 1 +a 22 x 2 +…+a 2n x n =b 2 … … a n1 x 1 +a n2 x 2 +…+a nn x n =b n
  • a 11 x 1 +a 12 x 2 +…+a 1n x n =b 1 a 21 x 1 +a 22 x 2 +…+a 2n x n =b 2 … … a n1 x 1 +a n2 x 2 +…+a nn x n =b n
  • a 11 x 1 +a 12 x 2 +…+a 1n x n =b 1 a 21 x 1 +a 22 x 2 +…+a 2n x n =b 2 … … a n1 x 1 +a n2 x 2 +…+a nn x n =b n
Имеет единственное решение тогда и только тогда, когда определитель матрицы этой системы отличен от нуля: a 11 a 12 … a 1n a 21 a 22 … a 2n   …   … a n1 a n2 … a nn a 11 a 12 … a 1n a 21 a 22 … a 2n   …   … a n1 a n2 … a nn ≠ 0

Имеет единственное решение тогда и только тогда, когда определитель матрицы этой системы отличен от нуля:

a 11 a 12 … a 1n

a 21 a 22 … a 2n

… …

a n1 a n2 … a nn

  • a 11 a 12 … a 1n a 21 a 22 … a 2n … … a n1 a n2 … a nn

≠ 0

В этом случае решение можно вычислить по  формуле Крамера

В этом случае решение можно вычислить по формуле Крамера

 Для получения значения  x k в числитель ставится  определитель, получающийся из  det(A)  заменой его  k- го столбца на столбец правых частей   Пример. Решить систему уравнений :

Для получения значения x k в числитель ставится определитель, получающийся из det(A) заменой его k- го столбца на столбец правых частей

  • Пример. Решить систему уравнений :
Решение.

Решение.

Найдите оставшиеся компоненты решения. Формулы Крамера не представляют практического значения в случае систем с числовыми коэффициентами: вычислять по ним решения конкретных систем линейных уравнений неэффективно, поскольку они требуют вычисления (n+1)-го определителя порядка n , в то время как метод Гаусса фактически эквивалентен вычислению одного определителя порядка n . Тем не менее, теоретическое значение формул Крамера заключается в том, что они дают явное представление решения системы через ее коэффициенты. Например, с их помощью легко может быть доказан результат  Решение системы линейных уравнений с квадратной матрицей A является непрерывной функцией коэффициентов этой системы при условии, что det A не равно 0 .

Найдите оставшиеся компоненты решения.

  • Формулы Крамера не представляют практического значения в случае систем с числовыми коэффициентами: вычислять по ним решения конкретных систем линейных уравнений неэффективно, поскольку они требуют вычисления (n+1)-го определителя порядка n , в то время как метод Гаусса фактически эквивалентен вычислению одного определителя порядка n . Тем не менее, теоретическое значение формул Крамера заключается в том, что они дают явное представление решения системы через ее коэффициенты. Например, с их помощью легко может быть доказан результат
  • Решение системы линейных уравнений с квадратной матрицей A является непрерывной функцией коэффициентов этой системы при условии, что det A не равно 0 .
Найдите оставшиеся компоненты решения. Кроме того, формулы Крамера начинают конкурировать по вычислительной эффективности с методом Гаусса в случае систем, зависящих от параметра.   зависящей от параметра , определить предел отношения компонент решения:

Найдите оставшиеся компоненты решения.

  • Кроме того, формулы Крамера начинают конкурировать по вычислительной эффективности с методом Гаусса в случае систем, зависящих от параметра.
  • зависящей от параметра , определить предел отношения компонент решения:
Решение.  В этом примере определитель матрицы системы равен . По теореме Крамера система совместна при . Для случая применением метода Гаусса убеждаемся, что система несовместна. Тем не менее, указанный предел существует. Формулы Крамера дают значения компонент решения в виде и, хотя при          каждая из них имеет бесконечный предел, их отношение стремится к пределу конечному.

Решение.

  • В этом примере определитель матрицы системы равен . По теореме Крамера система совместна при . Для случая применением метода Гаусса убеждаемся, что система несовместна. Тем не менее, указанный предел существует. Формулы Крамера дают значения компонент решения в виде

и, хотя при          каждая из них имеет бесконечный предел, их отношение стремится к пределу конечному.

Ответ.   Приведенный пример поясняет также каким образом система линейных уравнений, непрерывно зависящая от параметра, становится несовместной: при стремлении параметра к какому-то критическому значению (обращающему в нуль определитель матрицы системы) хотя бы одна из компонент решения «уходит на бесконечность».

Ответ.

Приведенный пример поясняет также каким образом система линейных уравнений, непрерывно зависящая от параметра, становится несовместной: при стремлении параметра к какому-то критическому значению (обращающему в нуль определитель матрицы системы) хотя бы одна из компонент решения «уходит на бесконечность».

Использованные источники В.С. Щипачев, Высшая математика Ильин В. А., Позняк Э. Г. Линейная алгебра: Учебник для вузов. Волков Е.А. Численные методы. В.Е. Шнейдер и др., Краткий курс высшей математики,том I.

Использованные источники

  • В.С. Щипачев, Высшая математика
  • Ильин В. А., Позняк Э. Г. Линейная алгебра: Учебник для вузов.
  • Волков Е.А. Численные методы.
  • В.Е. Шнейдер и др., Краткий курс высшей математики,том I.


Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!