СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Математика. Иррациональные уравнения.

Категория: Математика

Нажмите, чтобы узнать подробности

 Иррациональным  уравнением  называется уравнение, которое содержит неизвестное под знаком корня.

Решение иррациональных уравнений сводится к переходу от иррационального к рациональному уравнению путем возведения в степень обеих частей уравнения или замены переменной.

Рассмотрим два вида иррациональных уравнений, которые очень похожи на первый взгляд, но по сути  сильно друг от друга отличаются.

  (1)

и

   (2)

В первом уравнении   мы видим, что  неизвестное стоит под знаком корня третьей степени. Мы можем извлекать корень нечетной степени из отрицательного числа, поэтому в этом уравнении нет никаких ограничений ни на выражение, стоящее под знаком корня, ни на выражение, стоящее в правой части уравнения.  Мы можем возвести обе части уравнения в третью степень, чтобы избавиться от корня. Получим равносильное уравнение:

При возведении правой и левой части уравнения в нечетную степень  мы можем не опасаться  получить посторонние корни.

Пример 1. Решим уравнение 

Возведем обе части уравнения в третью степень. Получим равносильное уравнение:

Перенесем все слагаемые в одну сторону и вынесем за скобки х:

Приравняем каждый множитель к нулю, получим:

,   ,    

Ответ: {0;1;2}

Посмотрим внимательно на второе  уравнение: . В левой части уравнения стоит квадратный корень, который принимает только  неотрицательные значения. Поэтому, чтобы уравнение имело решения, правая часть тоже должна быть неотрицательной. Поэтому на правую часть уравнения накладывается условие:

 - это условие существования корней.

Чтобы решить уравнение такого вида, нужно обе части уравнения возвести в квадрат:

  (3)

Возведение в квадрат может привести к появлению посторонних корней, поэтому нам надо  учесть ОДЗ уравнения:

  (4)

Однако, неравенство (4) следует из условия (3): если в правой части равенства стоит квадрат какого-то выражения, а квадрат любого выражения может принимать только неотрицательные значения, следовательно левая часть тоже должна быть неотрицательна. Поэтому условие (4) автоматически следует из условия (3) и наше уравнение  равносильно системе:

  

Пример 2. Решим уравнение:

.

Перейдем к равносильной системе:

  

Решим первое уравнение системы и проверим, какие корни удовлетворяют неравеству.

,   

Неравеству  удовлетворяет только корень 

Ответ: x=1

Внимание! Если мы в процессе решения  возводим обе части уравнения в квадрат, то нужно помнить, что могут появиться посторонние корни. Поэтому либо нужно переходить к равносильной системе, либо в конце решения СДЕЛАТЬ ПРОВЕРКУ: найти корни и подставить их в исходное уравнение.

Пример 3. Решим уравнение:

Чтобы решить это уравнение, нам также нужно возвести обе части в квадрат. Давайте в этом уравнении не будем заморачиваться с ОДЗ и условием существования корней, а просто в конце решения сделаем проверку.

Воозведем обе части уравнения в квадрат:

Перенесем слагаемое, содержащее корень влево, а все остальные слагаемые вправо:

Еще раз возведем обе части уравнения в квадрат:

По тереме Виета:

,   

Сделаем проверку. Для этого подставим найденные  корни в исходное уравнение. Очевидно, что при   правая часть исходного уравнения отрицательна, а левая положительна.

При  получаем верное равенство.

Ответ: 


Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!